About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 306704, 12 pages
http://dx.doi.org/10.1155/2013/306704
Research Article

Petri Net-Based R&D Process Modeling and Optimization for Composite Materials

The Key Laboratory of Machinery Automation and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Mailbox 232, No. 149 Yanchang Road, Shanghai 200072, China

Received 7 June 2013; Accepted 27 August 2013

Academic Editor: Chong Lin

Copyright © 2013 Xiaomei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-C. Chen, M.-L. Yeh, C.-L. Hong, and C.-T. Chang, “Petri-net based approach to configure online fault diagnosis systems for batch processes,” Industrial & Engineering Chemistry Research, vol. 49, no. 9, pp. 4249–4268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Sanjin, M. Milan, and V. Slako, “A fuzzy Petri net model to estimate train delays,” Simulation Modelling Practice and Theory, vol. 33, pp. 144–157, 2013. View at Publisher · View at Google Scholar
  3. H.-H. Chou and C.-T. Chang, “Petri-net-based strategy to synthesize the operating procedures for cleaning pipeline networks,” Industrial & Engineering Chemistry Research, vol. 44, no. 1, pp. 114–123, 2005. View at Scopus
  4. M. Giovanni, B. Maurizio, and C. F. Emanuele, “Supply chain modeling and managing, using timed coloured Petri nets: a case study,” International Journal of Production Research, vol. 50, no. 16, pp. 4718–4733, 2012. View at Publisher · View at Google Scholar
  5. N. Balasubramanian, C.-T. Chang, and Y.-F. Wang, “Petri-net models for risk analysis of hazardous liquid loading operations,” Industrial & Engineering Chemistry Research, vol. 41, no. 19, pp. 4823–4836, 2002. View at Scopus
  6. P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, et al., “A top-down Petri net-based approach for dynamic workflow modeling,” in Business Process Management, W. M. P. van der Aalst, Ed., vol. 2678 of Lecture Notes in Computer Science, pp. 336–353, Springer, Berlin, Germany, 2003.
  7. C. Lin and Y. Qu, “Temporal inference of workflow systems based on time petri nets: quantitative and qualitative analysis,” International Journal of Intelligent Systems, vol. 19, no. 5, pp. 417–442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Hao, Y. S. Dong, and J. Z. Luo, “An effective approach to verify the correctness of workflow process models based on Petri net,” Journal of Southeast University, vol. 18, no. 4, pp. 361–366, 2002.
  9. W. M. P. van der Aalst, “The application of Petri nets to workflow management,” Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21–66, 1998. View at Scopus
  10. J. Hao, D. Yisheng, and L. Junzhou, “Research on Petri net based modeling and analyzing methods for workflow process,” Joumal of Southeast University, vol. 2, pp. 68–70, 2000.
  11. H. Hu and Z. Li, “Modeling and scheduling for manufacturing grid workflows using timed Petri nets,” International Journal of Advanced Manufacturing Technology, vol. 42, no. 5-6, pp. 553–568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-W. Lai, C.-T. Chang, and S.-H. Hwang, “Petri-net based binary integer programs for automatic synthesis of batch operating procedures,” Industrial & Engineering Chemistry Research, vol. 46, no. 9, pp. 2797–2813, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-F. Wang and C.-T. Chang, “Petri-net-based deductive reasoning strategy for fault identification in batch processes,” Industrial & Engineering Chemistry Research, vol. 43, no. 11, pp. 2704–2720, 2004. View at Scopus
  14. R. Yongjie, Multi-Agent Workflow Model (MAWM): a workflow model designed for Chinese business processes [a thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in systems engineering and engineering management], The Chinese University of Hong Kong, 2001.
  15. T. F. Laurentiu and B. Corina, “Priority workflow nets,” IEEE Transactions on Systems Man Cybernetics-Systems, vol. 43, no. 2, pp. 402–415, 2013. View at Publisher · View at Google Scholar
  16. L. He, C. Huang, K. Duan et al., “Modeling and analyzing the impact of authorization on workflow executions,” Future Generation Computer Systems, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J. R. Fanchi, “Flow modeling workflow,” Journal of Petroleum Science and Engineering, vol. 79, no. 1-2, pp. 54–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Wibowo and K. M. Ng, “Workflow for process synthesis and development: crystallization and solids processing,” Industrial & Engineering Chemistry Research, vol. 41, no. 16, pp. 3839–3848, 2002. View at Scopus
  19. Y. Lu, L. Zhang, and J. Sun, “Using colored Petri nets to model and analyze workflow with separation of duty constraints,” International Journal of Advanced Manufacturing Technology, vol. 40, no. 1-2, pp. 179–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Jun, D. Hai-hong, G. Yun-feng, et al., “Workflow modeling and time performance analysis based on Petri net,” Journal of Jilin University, vol. 27, no. 1, pp. 104–112, 2009.
  21. M. Dong and F. F. Chen, “Petri net-based workflow modelling and analysis of the integrated manufacturing business processes,” International Journal of Advanced Manufacturing Technology, vol. 26, no. 9-10, pp. 1163–1172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Behnam, M. Homayun, and B. H. Solving, “Flexible job-shop scheduling problem using gravitational search algorithm and colored Petri net,” Journal of Applied Mathematics, vol. 2012, Article ID 651310, 20 pages, 2012. View at Publisher · View at Google Scholar
  23. S. Balaguer, T. Chatain, and S. Haar, “A concurrency-preserving translation from time Petri nets to networks of timed automata,” Formal Methods in System Design, vol. 40, no. 3, pp. 330–355, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kloetzer, C. Mahulea, C. Belta, and M. Silva, “An automated framework for formal verification of timed continuous petri nets,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3, pp. 460–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Yanfu, Z. Enrico, and L. Yanhui, “A multistate physics model of component degradation based on stochastic Petri nets and simulation,” IEEE Transactions on Reliability, vol. 61, no. 4, pp. 921–931, 2012. View at Publisher · View at Google Scholar
  26. D. Lefebvre, “About the stochastic and continuous Petri nets equivalence in the long run,” Nonlinear Analysis: Hybrid Systems, vol. 5, no. 3, pp. 394–406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Daniel, R. Jan, and W. Matthias, “Modeling group scheduling problems in space and time by timed Petri nets,” Fundamenta Informaticae, vol. 122, no. 4, pp. 297–313, 2013.
  28. L, W. S. Miao, and L. Zhiwu, “Supervisor reconfiguration for deadlock prevention by resources reallocation,” Journal of Applied Mathematics, vol. 2013, Article ID 315894, 11 pages, 2013. View at Publisher · View at Google Scholar