About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 320276, 13 pages
http://dx.doi.org/10.1155/2013/320276
Research Article

A Differential Algebraic Method to Approximate Nonsmooth Mechanical Systems by Ordinary Differential Equations

Department of Mechanical Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

Received 28 September 2012; Revised 1 April 2013; Accepted 3 April 2013

Academic Editor: Jitao Sun

Copyright © 2013 Xiaogang Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Anitescu, “A fixed time-step approach for multibody dynamics with contact and friction,” in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '03), pp. 3725–3731, Las Vegas, NV, USA, October 2003.
  2. Z. Qi, X. Luo, and Z. Huang, “Frictional contact analysis of spatial prismatic joints in multibody systems,” Multibody System Dynamics, vol. 26, no. 4, pp. 441–468, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. P. Song, P. Kraus, V. Kumar, and P. Dupont, “Analysis of rigid-body dynamic models for simulation of systems with frictional contacts,” Journal of Applied Mechanics, vol. 68, no. 1, pp. 118–128, 2001. View at Scopus
  4. G. D. Hart and M. Anitescu, “A hard-constraint time-stepping approach for rigid multibody dynamics with joints, contact, and friction,” in Proceedings of the Richard Tapia Celebration of Diversity in Computing Conference (Tapia '03),, pp. 34–40, Atlanta, GA, USA, October 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Dahl, “A solid friction model,” Tech. Rep., Aerospace Corporation, El Segundo, Calif, USA, 1968.
  6. C. Canudas de Wit, H. Olsson, K. J. Åström, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 419–425, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. F. A. Tariku and R. J. Rogers, “Improved dynamic friction models for simulation of one-dimensional and two-dimensional stick-slip motion,” Journal of Tribology, vol. 123, no. 4, pp. 661–669, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. D. Quinn, “A new regularization of Coulomb friction,” Journal of Vibration and Acoustics, vol. 126, no. 3, pp. 391–397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Al-Bender, V. Lampaert, and J. Swevers, “The generalized Maxwell-slip model: a novel model for friction simulation and compensation,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1883–1887, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  10. L. Luo and M. Nahon, “Development and validation of geometry-based compliant contact models,” Journal of Computational and Nonlinear Dynamics, vol. 6, no. 1, Article ID 011004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Gonthier, J. McPhee, C. Lange, and J. C. Piedbœuf, “A regularized contact model with asymmetric damping and dwell-time dependent friction,” Multibody System Dynamics, vol. 11, no. 3, pp. 209–233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. W. Marhefka and D. E. Orin, “A compliant contact model with nonlinear damping for simulation of robotic systems,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 29, no. 6, pp. 566–572, 1999. View at Scopus
  13. K. H. Hunt and F. R. E. Crossley, “Coefficient of restitution interpreted as damping in vibroimpact,” Journal of Applied Mechanics, vol. 42, no. 2, pp. 440–445, 1975. View at Scopus
  14. M. Anitescu, F. A. Potra, and D. E. Stewart, “Time-stepping for three-dimensional rigid body dynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 177, no. 3-4, pp. 183–197, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems,” Nonlinear Dynamics, vol. 14, no. 3, pp. 231–247, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. C. Glocker and C. Studer, “Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics,” Multibody System Dynamics, vol. 13, no. 4, pp. 447–463, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM Review, vol. 42, no. 1, pp. 3–39, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. M. Anitescu and G. D. Hart, “A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction,” International Journal for Numerical Methods in Engineering, vol. 60, no. 14, pp. 2335–2371, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. F. A. Potra and M. Anitescu, “A time-stepping method for stiff multibody dynamics with contact and friction,” International Journal for Numerical Methods in Engineering, vol. 55, no. 7, pp. 753–784, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. F. A. Potra, M. Anitescu, B. Gavrea, and J. Trinkle, “A linearly implicit trapezoidal method for integrating stiff multibody dynamics with contact, joints, and friction,” International Journal for Numerical Methods in Engineering, vol. 66, no. 7, pp. 1079–1124, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. M. Förg, F. Pfeiffer, and H. Ulbrich, “Simulation of unilateral constrained systems with many bodies,” Multibody System Dynamics, vol. 14, no. 2, pp. 137–154, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. P. Flores, R. Leine, and C. Glocker, “Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach,” Multibody System Dynamics, vol. 23, no. 2, pp. 165–190, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  23. R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto, “Admittance and impedance representations of friction based on implicit Euler integration,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1176–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems, vol. 35 of Lecture Notes in Applied and Computational Mechanics, Springer, Berlin, Germany, 2008.
  25. R. Kikuuwe and H. Fujimoto, “Incorporating geometric algorithms in impedance- and admittance-type haptic rendering,” in Proceedings of the 2nd Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC '07), pp. 249–254, Tsukuba, Japan, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. Stewart, “A numerical method for friction problems with multiple contacts,” Australian Mathematical Society B, vol. 37, no. 3, pp. 288–308, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto, “Proxy-based sliding mode control: a safer extension of PID position control,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 670–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Kikuuwe, M. Yamamoto, and H. Fujimoto, “Velocity-bounding stiff position controller,” in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 3050–3055, Beijing, China, October 2006.
  29. V. Acary, O. Bonnefon, and B. Brogliato, “Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 7, pp. 1042–1055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Brogliato, A. Daniilidis, C. Lemaréchal, and V. Acary, “On the equivalence between complementarity systems, projected systems and differential inclusions,” Systems & Control Letters, vol. 55, no. 1, pp. 45–51, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” Journal of Dynamic Systems, Measurement and Control, vol. 107, no. 1, pp. 100–103, 1985. View at Scopus
  32. P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state elastoplastic friction models,” IEEE Transactions on Automatic Control, vol. 47, no. 5, pp. 787–792, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  33. J. Bastien and C. H. Lamarque, “Persoz's gephyroidal model described by a maximal monotone differential inclusion,” Archive of Applied Mechanics, vol. 78, no. 5, pp. 393–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Kikuuwe and M. Yamamoto, “A modular software architecture for simulating mechanical systems involving coulomb friction integrable by the Runge-Kutta method,” in Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '08), pp. 2277–2282, Nice, France, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. K. Vukobratović and V. Potkonjak, “Dynamics of contact tasks in robotics. I. General model of robot interacting with environment,” Mechanism and Machine Theory, vol. 34, no. 6, pp. 923–942, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. P. Flores and J. Ambrósio, “On the contact detection for contact-impact analysis in multibody systems,” Multibody System Dynamics, vol. 24, no. 1, pp. 103–122, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  37. Y. Zhang and I. Sharf, “Validation of nonlinear viscoelastic contact force models for low speed impact,” Journal of Applied Mechanics, vol. 76, no. 5, Article ID 051002, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. E. Sørensen, M. R. Hansen, M. Ebbesen, and O. Mouritsen, “Implicit identification of contact parameters in a continuous chain model,” Modeling, Identification and Control, vol. 32, no. 1, pp. 1–15, 2011.
  39. Ch. Glocker and F. Pfeiffer, “Multiple impacts with friction in rigid multibody systems,” Nonlinear Dynamics, vol. 7, no. 4, pp. 471–497, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  40. J. Baumgarte, “Stabilization of constraints and integrals of motion in dynamical systems,” Computer Methods in Applied Mechanics and Engineering, vol. 1, pp. 1–16, 1972. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. J. Awrejcewicz, M. Fečkan, and P. Olejnik, “On continuous approximation of discontinuous systems,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 62, no. 7, pp. 1317–1331, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet