About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 420286, 13 pages
http://dx.doi.org/10.1155/2013/420286
Research Article

Spatial Object Tracking Using an Enhanced Mean Shift Method Based on Perceptual Spatial-Space Generation Model

Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received 10 January 2013; Accepted 20 March 2013

Academic Editor: Graziano Chesi

Copyright © 2013 Pengcheng Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. D. Gray, “Simulated task environments: the role of high-fidelity simulations, scaled worlds, synthetic environments, and microworlds in basic and applied cognitive research,” Cognitive Science Quarterly, vol. 2, no. 2, pp. 205–227, 2002.
  2. D. Schröder, C. Hintz, and M. Rau, “Intelligent modeling, observation, and control for nonlinear systems,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 2, pp. 122–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Hsia, C. H. Hsiao, and C. Y. Huang, “Single-object-based segmentation and coding technique for video surveillance system,” Journal of Electronic Imaging, vol. 18, no. 3, Article ID 033007, 10 pages, 2009. View at Publisher · View at Google Scholar
  4. J. Lee, Y. Chee, and I. Kim, “Personal identification based on vector cardiogram derived from limb leads electrocardiogram,” Journal of Applied Mathematics, vol. 2012, Article ID 904905, 12 pages, 2012. View at Publisher · View at Google Scholar
  5. W. B. Wan, T. Fang, and S. G. Li, “Vehicle detection algorithm based on light pairing and tracking at nighttime,” Journal of Electronic Imaging, vol. 20, no. 4, Article ID 043008, 11 pages, 2011. View at Publisher · View at Google Scholar
  6. J. Xiao, H. Cheng, H. Sawhney, and F. Han, “Vehicle detection and tracking in wide field-of-view aerial video,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '10), pp. 679–684, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Kerekes, M. Muldowney, K. Strackerjan, L. Smith, and B. Leahy, “Vehicle tracking with multi-temporal hyperspectral imagery,” in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, vol. 6233 of Proceedings of SPIE, April 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Yu and D. Z. Pan, “ELIAS: an accurate and extensible lithography aerial image simulator with improved numerical algorithms,” IEEE Transactions on Semiconductor Manufacturing, vol. 22, no. 2, pp. 276–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. G. Sim, R. H. Park, R. C. Kim, S. U. Lee, and I. C. Kim, “Integrated position estimation using aerial image sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 1–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Mumford and B. Gidas, “Stochastic models for generic images,” Quarterly of Applied Mathematics, vol. 59, no. 1, pp. 85–111, 2001. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  11. A. P. Witkin, “Scale space filtering,” in Proceedings of the 8th International Joint Conference on Artificial Intelligence, pp. 1019–1022, Kaufman, Karlsruhe, Germany, 1983.
  12. J. J. Koenderink, “The structure of images,” Biological Cybernetics, vol. 50, no. 5, pp. 363–370, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  13. P. J. Burt, “Attention mechanisms for vision in a dynamic world,” in Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 977–987, The Hague, The Netherlands, 1988.
  14. T. Lindeberg, “Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention,” International Journal of Computer Vision, vol. 11, no. 3, pp. 283–318, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM Computing Surveys, vol. 38, no. 4, article 13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Ramos and S. S. Hemami, “Eigenfeatures coding of videoconferencing sequences,” in Proceedings of the Visual Communications and Image Processing, vol. 2727 of Proceedings of SPIE, pp. 100–110, Orlando, Fla, USA, March 1996. View at Publisher · View at Google Scholar
  17. M. Isard and A. Blake, “CONDENSATION—conditional density propagation for visual tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Sun and G. Liu, “Visual object tracking based on combination of local description and global representation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 4, pp. 408–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky, “Nonparametric belief propagation,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 605–612, Madison, Wis, USA, June 2003. View at Scopus
  20. B. Chen and J. C. Principe, “Maximum correntropy estimation is a smoothed MAP estimation,” IEEE Signal Processing Letters, vol. 19, no. 8, pp. 491–494, 2012. View at Publisher · View at Google Scholar
  21. Y. Wang and S. C. Zhu, “Modeling complex motion by tracking and editing hidden Markov graphs,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), pp. I856–I863, July 2004. View at Scopus
  22. X. Xie, H. Liu, W. Y. Ma, and H. J. Zhang, “Browsing large pictures under limited display sizes,” IEEE Transactions on Multimedia, vol. 8, no. 4, pp. 707–714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984. View at Scopus
  25. S. Qi and X. Huang, “Hand tracking and gesture gecogniton by anisotropic kernel mean shift,” in Proceedings of IEEE International Conference Neural Networks and Signal Processing (ICNNSP '08), pp. 581–585, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. W. Lee, K. C. Hung, B. D. Liu, S. F. Lei, and H. W. Ting, “Realization of high octave decomposition for breast cancer feature extraction on ultrasound images,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 6, pp. 1287–1299, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. Z. H. Khan, I. Y. H. Gu, and A. G. Backhouse, “Robust visual object tracking using multi-mode anisotropic mean shift and particle filters,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 1, pp. 74–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Tsagkatakis and A. Savakis, “Online distance metric learning for object tracking,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 12, pp. 1810–1821, 2011. View at Publisher · View at Google Scholar