About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 528717, 6 pages
http://dx.doi.org/10.1155/2013/528717
Research Article

Stagnation-Point Flow toward a Vertical, Nonlinearly Stretching Sheet with Prescribed Surface Heat Flux

1Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received 27 November 2012; Revised 31 January 2013; Accepted 31 January 2013

Academic Editor: Chein-Shan Liu

Copyright © 2013 Sin Wei Wong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. V. Karwe and Y. Jaluria, “Fluid flow and mixed convection transport from a moving plate in rolling and extrusion processes,” Journal of Heat Transfer, vol. 110, no. 3, pp. 655–661, 1988. View at Scopus
  2. M. V. Karwe and Y. Jaluria, “Numerical simulation of thermal transport associated with a continuously moving flat sheet in materials processing,” ASME Journal of Heat Transfer, vol. 113, no. 3, pp. 612–619, 1991. View at Scopus
  3. L. J. Crane, “Flow past a stretching plate,” Journal of Applied Mathematics and Physics, vol. 21, no. 4, pp. 645–647, 1970. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Weidman and Magyari, “Generalized Crane flow induced by continuous surfaces stretching with arbitrary velocities,” Acta Mechanica, vol. 209, no. 3-4, pp. 353–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. D. Weidman and M. E. Ali, “Aligned and nonaligned radial stagnation flow on a stretching cylinder,” European Journal of Mechanics B/Fluids, vol. 30, no. 1, pp. 120–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Chen, “Laminar mixed convection adjacent to vertical, continuously stretching sheets,” Heat and Mass Transfe, vol. 33, no. 5-6, pp. 471–476, 1998. View at Scopus
  7. M. Ali and F. Al-Yousef, “Laminar mixed convection boundary layers induced by a linearly stretching permeable surface,” International Journal of Heat and Mass Transfer, vol. 45, no. 21, pp. 4241–4250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ishak, R. Nazar, and I. Pop, “Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet,” Meccanica, vol. 41, no. 5, pp. 509–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Ishak, R. Nazar, and I. Pop, “Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet,” Heat and Mass Transfer, vol. 44, no. 8, pp. 921–927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. M. Ali, R. Nazar, N. M. Arifin, and I. Pop, “Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate,” Meccanica, vol. 46, no. 5, pp. 1103–1112, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. D. Pal, “Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation,” Meccanica, vol. 44, no. 2, pp. 145–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Ramachandran, T. S. Chen, and B. F. Armaly, “Mixed convection in stagnation flows adjacent to vertical surfaces,” ASME Journal of Heat Transfer, vol. 110, no. 2, pp. 373–377, 1988. View at Scopus
  13. M. Ayub, H. Zaman, M. Sajid, and T. Hayat, “Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 9, pp. 1822–1835, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. N. Bachok, A. Ishak, and I. Pop, “On the stagnation-point flow towards a stretching sheet with homogeneous-heterogeneous reactions effects,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4296–4302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Bachok, A. Ishak, and I. Pop, “Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid,” International Journal of Heat and Mass Transfer, vol. 55, pp. 8122–8128, 2012. View at Publisher · View at Google Scholar
  16. N. Bachok, A. Ishak, and I. Pop, “Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet,” Physics Letters A, vol. 374, no. 40, pp. 4075–4079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Bhattacharyya, “Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet,” International Communications in Heat and Mass Transfer, vol. 38, no. 7, pp. 917–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Hayat, Z. Abbas, and M. Sajid, “MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface,” Chaos, Solitons and Fractals, vol. 39, no. 2, pp. 840–848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Ibrahim, B. Shankar, and M. M. Nandeppanavar, “MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 56, pp. 1–9, 2013. View at Publisher · View at Google Scholar
  20. A. Ishak, K. Jafar, R. Nazar, and I. Pop, “MHD stagnation point flow towards a stretching sheet,” Physica A, vol. 388, no. 17, pp. 3377–3383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Labropulu, D. Li, and I. Pop, “Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer,” International Journal of Thermal Sciences, vol. 49, no. 6, pp. 1042–1050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. C. Layek, S. Mukhopadhyay, and Sk. A. Samad, “Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing,” International Communications in Heat and Mass Transfer, vol. 34, no. 3, pp. 347–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Y. Yian, N. Amin, and I. Pop, “Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate,” International Journal of Heat and Mass Transfer, vol. 50, no. 23-24, pp. 4855–4863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. R. Mahapatra, S. Dholey, and A. S. Gupta, “Oblique stagnation-point flow of an incompressible visco-elastic fluid towards a stretching surface,” International Journal of Non-Linear Mechanics, vol. 42, no. 3, pp. 484–499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Paullet and P. Weidman, “Analysis of stagnation point flow toward a stretching sheet,” International Journal of Non-Linear Mechanics, vol. 42, no. 9, pp. 1084–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Rosali, A. Ishak, and I. Pop, “Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium,” International Communications in Heat and Mass Transfer, vol. 38, no. 8, pp. 1029–1032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. N. A. Yacob, A. Ishak, and I. Pop, “Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid,” Computers and Fluids, vol. 47, no. 1, pp. 16–21, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  28. J. H. Merkin and T. Mahmood, “Mixed convection boundary layer similarity solutions: prescribed wall heat flux,” Journal of Applied Mathematics and Physics, vol. 40, no. 1, pp. 51–68, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  29. C. Y. Wang, “Stagnation flow towards a shrinking sheet,” International Journal of Non-Linear Mechanics, vol. 43, no. 5, pp. 377–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. B. Keller, “A new difference scheme for parabolic problems,” in Numerical Solution of Partial-Differential Equations, J. Bramble, Ed., vol. 2, pp. 327–350, Academic Press, New York, NY, USA, 1970. View at Zentralblatt MATH · View at MathSciNet