About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 696191, 6 pages
http://dx.doi.org/10.1155/2013/696191
Research Article

Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid

1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang, 26400 Bandar Tun Razak Jengka, Pahang, Malaysia
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
3Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

Received 27 December 2012; Accepted 20 June 2013

Academic Editor: Subhas Abel

Copyright © 2013 Nor Azizah Yacob et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Ding, H. Chen, Y. He et al., “Forced convective heat transfer of nanofluids,” Advanced Powder Technology, vol. 18, no. 6, pp. 813–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, vol. 46, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the International Mechanical Engineering Congress and Exposition, vol. 66, pp. 99–105, ASME, FED 231/MD, San Francisco, Calif, USA, 1995.
  4. H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, “Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate,” Journal of Crystal Growth, vol. 45, pp. 495–500, 1978. View at Scopus
  5. J. A. Eastman, U. S. Choi, S. Li, L. J. Thompson, and S. Lee, “Enhanced thermal conductivity through the development of nanofluids,” in Proceedings of the Materials Research Society Symposium (MRS '96), vol. 457, pp. 3–11, Materials Research Society, Pittsburgh, Pa, USA, December 1996. View at Scopus
  6. E. Abu-Nada and H. F. Oztop, “Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid,” International Journal of Heat and Fluid Flow, vol. 30, no. 4, pp. 669–678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 50, no. 9-10, pp. 2002–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. El Bécaye Maïga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” International Journal of Heat and Fluid Flow, vol. 26, no. 4, pp. 530–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Polidori, S. Fohanno, and C. T. Nguyen, “A note on heat transfer modelling of Newtonian nanofluids in laminar free convection,” International Journal of Thermal Sciences, vol. 46, no. 8, pp. 739–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Talebi, A. H. Mahmoudi, and M. Shahi, “Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid,” International Communications in Heat and Mass Transfer, vol. 37, no. 1, pp. 79–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Akbari, A. Behzadmehr, and F. Shahraki, “Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid,” International Journal of Heat and Fluid Flow, vol. 29, no. 2, pp. 545–556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Shahi, A. H. Mahmoudi, and F. Talebi, “Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid,” International Communications in Heat and Mass Transfer, vol. 37, no. 2, pp. 201–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology, Wiley, Hoboken, NJ, USA, 2007.
  15. S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, pp. 3187–3196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Abu-Nada, “Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step,” International Journal of Heat and Fluid Flow, vol. 29, no. 1, pp. 242–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ahmad, A. M. Rohni, and I. Pop, “Blasius and Sakiadis problems in nanofluids,” Acta Mechanica, vol. 218, no. 3-4, pp. 195–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Rohni, S. Ahmad, and I. Pop, “Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 21, no. 7, pp. 828–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Bachok, A. Ishak, R. Nazar, and I. Pop, “Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid,” Physica B, vol. 405, no. 24, pp. 4914–4918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer over a rotating porous disk in a nanofluid,” Physica B, vol. 406, no. 9, pp. 1767–1772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Bachok, A. Ishak, and I. Pop, “Stagnation-point flow over a stretching/shrinking sheet in a nanofluid,” Nanoscale Research Letters, vol. 6, article 623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer characteristics on a moving plate in a nanofluid,” International Journal of Heat and Mass Transfer, vol. 55, no. 4, pp. 642–648, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Bachok, A. Ishak, and I. Pop, “Boundary layer flow over a moving surface in a nanofluid with suction or injection,” Acta Mechanica Sinica, vol. 28, no. 1, pp. 34–40, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. N. A. Yacob, A. Ishak, I. Pop, and K. Vajravelu, “Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid,” Nanoscale Research Letters, vol. 6, article 314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. N. A. Yacob, A. Ishak, and I. Pop, “Falkner-Skan problem for a static or moving wedge in nanofluids,” International Journal of Thermal Sciences, vol. 50, no. 2, pp. 133–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Muthtamilselvan, P. Kandaswamy, and J. Lee, “Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1501–1510, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  27. D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5792–5795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” International Journal of Thermal Sciences, vol. 49, no. 2, pp. 243–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” International Journal of Heat and Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Grubka and K. M. Bobba, “Heat transfer charateristics of a continuous, stretching surface with variable temperature,” Journal of Heat Transfer, vol. 107, no. 1, pp. 248–250, 1985. View at Scopus
  31. A. Ishak, R. Nazar, and I. Pop, “Unsteady mixed convection boundary layer flow due to a stretching vertical surface,” Arabian Journal for Science and Engineering, vol. 31, no. 2 B, pp. 165–182, 2006. View at MathSciNet · View at Scopus
  32. T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, NY, USA, 1988. View at Publisher · View at Google Scholar · View at MathSciNet