About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 752760, 10 pages
http://dx.doi.org/10.1155/2013/752760
Research Article

Approximate Solution of LR Fuzzy Sylvester Matrix Equations

1College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
2Department of Public Courses, Gansu College of Traditional Chinese Medicine, Lanzhou 730000, China

Received 4 September 2012; Revised 17 October 2012; Accepted 5 November 2012

Academic Editor: Hector Pomares

Copyright © 2013 Xiaobin Guo and Dequan Shang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning. I,” vol. 8, pp. 199–249, 1975. View at Zentralblatt MATH
  2. D. Dubois and H. Prade, “Operations on fuzzy numbers,” International Journal of Systems Science, vol. 9, no. 6, pp. 613–626, 1978. View at Zentralblatt MATH
  3. S. Nahmias, “Fuzzy variables,” Fuzzy Sets and Systems, vol. 1, no. 2, pp. 97–110, 1978. View at Zentralblatt MATH
  4. M. L. Puri and D. A. Ralescu, “Differentials of fuzzy functions,” Journal of Mathematical Analysis and Applications, vol. 91, no. 2, pp. 552–558, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. R. Goetschel Jr. and W. Voxman, “Elementary fuzzy calculus,” Fuzzy Sets and Systems, vol. 18, no. 1, pp. 31–43, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. C. X. Wu and M. Ma, “Embedding problem of fuzzy number space. I,” Fuzzy Sets and Systems, vol. 44, no. 1, pp. 33–38, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. C. X. Wu and M. Ma, “Embedding problem of fuzzy number space. III,” Fuzzy Sets and Systems, vol. 46, no. 2, pp. 281–286, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. M. Friedman, M. Ming, and A. Kandel, “Fuzzy linear systems,” Fuzzy Sets and Systems, vol. 96, no. 2, pp. 201–209, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. M. Ma, M. Friedman, and A. Kandel, “Duality in fuzzy linear systems,” Fuzzy Sets and Systems, vol. 109, no. 1, pp. 55–58, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. T. Allahviranloo, “Numerical methods for fuzzy system of linear equations,” Applied Mathematics and Computation, vol. 155, no. 2, pp. 493–502, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. T. Allahviranloo, “Successive over relaxation iterative method for fuzzy system of linear equations,” Applied Mathematics and Computation, vol. 162, no. 1, pp. 189–196, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. T. Allahviranloo, “The Adomian decomposition method for fuzzy system of linear equations,” Applied Mathematics and Computation, vol. 163, no. 2, pp. 553–563, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. S. Abbasbandy, R. Ezzati, and A. Jafarian, “LU decomposition method for solving fuzzy system of linear equations,” Applied Mathematics and Computation, vol. 172, no. 1, pp. 633–643, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. S. Abbasbandy, A. Jafarian, and R. Ezzati, “Conjugate gradient method for fuzzy symmetric positive definite system of linear equations,” Applied Mathematics and Computation, vol. 171, no. 2, pp. 1184–1191, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. S. Abbasbandy, M. Otadi, and M. Mosleh, “Minimal solution of general dual fuzzy linear systems,” Chaos, Solitons & Fractals, vol. 37, no. 4, pp. 1113–1124, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. B. Asady, S. Abbasbandy, and M. Alavi, “Fuzzy general linear systems,” Applied Mathematics and Computation, vol. 169, no. 1, pp. 34–40, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. K. Wang and B. Zheng, “Inconsistent fuzzy linear systems,” Applied Mathematics and Computation, vol. 181, no. 2, pp. 973–981, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. B. Zheng and K. Wang, “General fuzzy linear systems,” Applied Mathematics and Computation, vol. 181, no. 2, pp. 1276–1286, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. M. Dehghan, B. Hashemi, and M. Ghatee, “Computational methods for solving fully fuzzy linear systems,” Applied Mathematics and Computation, vol. 179, no. 1, pp. 328–343, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. M. Dehghan, B. Hashemi, and M. Ghatee, “Solution of the fully fuzzy linear systems using iterative techniques,” Chaos, Solitons & Fractals, vol. 34, no. 2, pp. 316–336, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. T. Allahviranloo, N. Mikaeilvand, and M. Barkhordary, “Fuzzy linear matrix equation,” Fuzzy Optimization and Decision Making, vol. 8, no. 2, pp. 165–177, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. X. B. Guo and Z. T. Gong, “Undetermined coefficients method for solving semi-fuzzy matrix equation,” in Proceedings of 9th International Conference on Machine Learning and Cybernetics,, vol. 2, pp. 596–600, Qingdao, China, July 2010.
  23. Z. Gong and X. Guo, “Inconsistent fuzzy matrix equations and its fuzzy least squares solutions,” Applied Mathematical Modelling, vol. 35, no. 3, pp. 1456–1469, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. X. B. Guo, “Approximate solution of fuzzy Sylvester matrix equations,” in Proceedings of the 7th International Conference on Computational Intelligence and Security, pp. 52–57, Sanya, China, December 2011.
  25. X. B. Guo and D. Q. Shang, “Fuzzy symmetric solutions of fuzzy matrix equations,” Advances in Fuzzy Systems, vol. 2012, Article ID 318069, 9 pages, 2012. View at Publisher · View at Google Scholar
  26. T. Allahviranloo, M. Ghanbari, A. A. Hosseinzadeh, E. Haghi, and R. Nuraei, “A note on “Fuzzy linear systems”,” Fuzzy Sets and Systems, vol. 177, pp. 87–92, 2011. View at Publisher · View at Google Scholar
  27. T. Allahviranloo, F. Hosseinzadeh Lotfi, M. Khorasani Kiasari, and M. Khezerloo, “On the fuzzy solution of LR fuzzy linear systems,” Applied Mathematical Modelling. In press. View at Publisher · View at Google Scholar
  28. A. Ben-Israel and T. N. E. Greville, Generalized Inverses:Theory and Applications, Springer, New York, NY, USA, 2nd edition, 2003.
  29. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, NY, USA, 1979.
  30. R. J. Plemmons, “Regular nonnegative matrices,” Proceedings of the American Mathematical Society, vol. 39, pp. 26–32, 1973. View at Publisher · View at Google Scholar · View at Zentralblatt MATH