About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 859803, 12 pages
http://dx.doi.org/10.1155/2013/859803
Research Article

Longwall Mining Stability in Take-Off Phase

1Department of Construction and Manufacture Engineering, Polytechnic School of Mieres, University of Oviedo, Mieres, 33600 Asturias, Spain
2Department of Exploitation and Prospecting Mines, Mining Engineering School, University of Oviedo, Oviedo, 33004 Asturias, Spain
3Department of Exploitation Mines, Polytechnic University of Madrid, 28040 Madrid, Spain
4Department of Exploitation and Prospecting Mines, Mining Engineering School, University of Oviedo, Oviedo, 33004 Asturias, Spain

Received 6 June 2013; Accepted 23 July 2013

Academic Editor: Ga Zhang

Copyright © 2013 María-Belén Prendes-Gero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Mechanised longwall mining is one of the more commonly employed exploitation methods in underground mines in the north of Spain as well as in the rest of the world. It is continuously changing and evolving, with new techniques, technology, equipment, and face management practices and systems appearing for the purposes of improving aspects such as operational and financial performances and, above all, the safety of the miners. Despite its importance, there are no regulations for the mining of longwall coal seams. This work aims to contribute to an advance in the design and optimisation of the roof support in longwall mining, analysing the stability of the roof using a method based on the resistance of materials, which considers the characteristics of the properties of the roof materials. The influence of not only the individual elements of support but also the coalface, which is considered one more supporting element, is investigated. The longitudinal and transverse spacings of the support and the number of walkways constituting the exploitation panel are analysed. The proposed formulation is validated by information gathered in a mine located in the region of Castilla-Leon.