About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 912056, 9 pages
http://dx.doi.org/10.1155/2013/912056
Research Article

A Cooperative Coevolutionary Cuckoo Search Algorithm for Optimization Problem

1Guangxi Key Laboratory of Hybrid Computation and Integrated Circuit Design Analysis, Nanning, Guangxi 530006, China
2College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, Guangxi 530006, China

Received 24 May 2013; Accepted 8 July 2013

Academic Editor: Xin-She Yang

Copyright © 2013 Hongqing Zheng and Yongquan Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. W. Leung and Y. P. Wang, “An orthogonal genetic algorithm with quantization for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 41–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Zhang and B. Zhang, “Good point set based genetic algorithm,” Chinese Journal of Computers, vol. 24, no. 9, pp. 917–922, 2001. View at MathSciNet · View at Scopus
  4. X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in Proceeding of the World Congress on Nature and Biologically Inspired Computing (NABIC '09), pp. 210–214, Coimbatore, India, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. X. S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach to function optimization,” in Parallel Problem Solving from Nature—PPSN III, Y. Davidor, H. P. Schwefel, and R. Mnner, Eds., vol. 866 of Lecture Notes in Computer Science, pp. 249–257, Springer, Berlin, Germany, 1994.
  7. F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to participle swam optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Liu, W. C. Zhong, and L. C. Jiao, “An organizational evolutionary algorithm for numerical optimization,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 37, no. 4, pp. 1052–1064, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Mu, L. Jiao, and Y. Liu, “M-elite coevolutionary algorithm for numerical optimization,” Ruan Jian Xue Bao/Journal of Software, vol. 20, no. 11, pp. 2925–2938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Fister, I. Fister Jr., J. Brest, and V. Žumer, “Memetic artificial bee colony algorithm for large-scale global optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8, Brisbane, Australia, 2012.
  11. C. A. C. Coello, “Use of a self-adaptive penalty approach for engineering optimization problems,” Computers in Industry, vol. 41, no. 2, pp. 113–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. P. B. Leite and B. H. V. Topping, “Improved genetic operators for structural engineering optimization,” Advances in Engineering Software, vol. 29, no. 7–9, pp. 529–562, 1998. View at Scopus
  13. K. Deb, “Optimal design of a welded beam via genetic algorithms,” AIAA Journal, vol. 29, no. 11, pp. 2013–2015, 1991. View at Publisher · View at Google Scholar
  14. A. C. C. Lemonge and H. J. C. Barbosa, “An adaptive penalty scheme for genetic algorithms in structural optimization,” International Journal for Numerical Methods in Engineering, vol. 59, no. 5, pp. 703–736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. S. Bernardino, H. J. C. Barbosa, and A. C. C. Lemonge, “A hybrid genetic algorithm for constrained optimization problems in mechanical engineering,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 646–653, Singapore, September 2007. View at Publisher · View at Google Scholar
  16. M. M. Atiqullah and S. S. Rao, “Simulated annealing and parallel processing: an implementation for constrained global design optimization,” Engineering Optimization, vol. 32, no. 5, pp. 659–685, 2000. View at Scopus
  17. A. R. Hedar and M. Fukushima, “Derivative-free filter simulated annealing method for constrained continuous global optimization,” Journal of Global Optimization, vol. 35, no. 4, pp. 521–649, 2006. View at Publisher · View at Google Scholar
  18. J. L. Liu, “Novel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problems,” Engineering Optimization, vol. 37, no. 5, pp. 499–519, 2005. View at Publisher · View at Google Scholar
  19. S. F. Hwang and R. S. He, “A hybrid real-parameter genetic algorithm for function optimization,” Advanced Engineering Informatics, vol. 20, no. 1, pp. 7–21, 2006. View at Publisher · View at Google Scholar
  20. K. E. Parsopoulos and M. N. Vrahatis, “Unified particle swarm optimization for solving constrained engineering optimization problems,” in Advances in Natural Computation, vol. 3612 of Lecture Notes in Computer Science, pp. 582–591, 2005.
  21. S. He, E. Prempain, and Q. H. Wu, “An improved particle swarm optimizer for mechanical design optimization problems,” Engineering Optimization, vol. 36, no. 5, pp. 585–605, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. J. Zhang, C. Liang, Y. Huang, J. Wu, and S. Yang, “An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization,” Applied Mathematics and Computation, vol. 211, no. 2, pp. 392–416, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. C. A. C. Coello, “Constraint-handling using an evolutionary multiobjective optimization technique,” Civil Engineering and Environmental Systems, vol. 17, no. 4, pp. 319–346, 2000. View at Scopus
  24. K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 36–38, pp. 3902–3933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony search algorithm for solving optimization problems,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1567–1579, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  26. M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, and Y. Alizadeh, “Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 33–40, pp. 3080–3091, 2008. View at Publisher · View at Google Scholar
  27. J. N. Siddall, Analytical Decision-Making in Engineering Design, Prentice-Hall, Englewood Cliffs, NJ, USA, 1972.
  28. S. Akhtar, K. Tai, and T. Ray, “A socio-behavioral simulation model for engineering design optimization,” Engineering Optimization, vol. 34, no. 4, pp. 341–354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Ray and K. M. Liew, “Society and civilization: an optimization algorithm based on the simulation of social behavior,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 4, pp. 386–396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. E. M. Montes and B. H. Oca, “Modified bacterial foraging optimization for engineering design,” in Proceedings of the Intelligent Engineering Systems through Artificial Neural Networks (ANNIE '2009), C. H. Dagli, K. M. Bryden, and S. M. Corns, Eds., vol. 19 of ASME Press Series, pp. 357–364.
  31. M. Zhang, W. Luo, and X. Wang, “Differential evolution with dynamic stochastic selection for constrained optimization,” Information Sciences, vol. 178, no. 15, pp. 3043–3074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. H. Gandomi, X. S. Yang, and A. H. Alavi, “Mixed variable structural optimization using Firefly algorithm,” Computers and Structures, vol. 89, no. 23-24, pp. 2325–2336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Yu, X. Yu, and Y. Li, “Solving engineering optimization problem by Augmented Lagrange particle swarm optimization,” Journal of Mechanical Engineering, vol. 45, no. 12, pp. 167–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. G. Dimopoulos, “Mixed-variable engineering optimization based on evolutionary and social metaphors,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 4–6, pp. 803–817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. X. S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley & Sons, New York, NY, USA, 2010.
  36. Y. W. Leung and Y. P. Wang, “An orthogonal genetic algorithm with quantization for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 41–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 284–294, 2000. View at Publisher · View at Google Scholar · View at Scopus