About this Journal Submit a Manuscript Table of Contents
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 983051, 9 pages
http://dx.doi.org/10.1155/2013/983051
Research Article

Incomplete Phase Space Reconstruction Method Based on Subspace Adaptive Evolution Approximation

1School of Electrical and Information Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2School of Electronic Engineering, Xi'an Shiyou University, Xi’an 710065, China

Received 19 July 2013; Accepted 19 September 2013

Academic Editor: Baocang Ding

Copyright © 2013 Tai-fu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Kaddoum, F. Gagnon, P. Chargé, and D. Roviras, “A generalized BER prediction method for differential chaos shift keying system through different communication channels,” Wireless Personal Communications, vol. 64, no. 2, pp. 425–437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Sivakumar, “Chaos theory in geophysics: past, present and future,” Chaos, Solitons & Fractals, vol. 19, no. 2, pp. 441–462, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  3. P. A. Mastorocostas, J. B. Theocharis, and A. G. Bakirtzis, “Fuzzy modeling for short term load forecasting using the orthogonal least squares method,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 29–36, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Y. Yang, H. Ye, G. Wang, J. Khan, and T. Hu, “Fuzzy neural very-short-term load forecasting based on chaotic dynamics reconstruction,” Chaos, Solitons & Fractals, vol. 29, no. 2, pp. 462–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Sivakumar, “A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers,” Journal of Hydrology, vol. 258, no. 1–4, pp. 149–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Porporato and L. Ridolfi, “Nonlinear analysis of river flow time sequences,” Water Resources Research, vol. 33, no. 6, pp. 1353–1367, 1997. View at Scopus
  7. P. Zhao, L. Xing, and J. Yu, “Chaotic time series prediction: from one to another,” Physics Letters A, vol. 373, no. 25, pp. 2174–2177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. D. I. Abarbanel, Analysis of Observed Chaotic Data, Springer, New York, NY, USA, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  9. M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Physical Review A, vol. 45, no. 6, pp. 3403–3411, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Ma and C. Han, “Selection of embedding dimension and delay time in phase space reconstruction,” Frontiers of Electrical and Electronic Engineering in China, vol. 1, no. 1, pp. 111–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Chen, G. Liu, J. Tang et al., “Research on chaotic sequence autocorrelation by phase space method,” Journal of the University of Electronic Science and Technology of China, vol. 39, no. 6, pp. 859–863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Jiang, X. Huang, Z. Zhang, J. Li, Z.-Y. Zhang, and H.-X. Hua, “Mutual information algorithms,” Mechanical Systems and Signal Processing, vol. 24, no. 8, pp. 2947–2960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Abu-Shikhah and F. Elkarmi, “Medium-term electric load forecasting using singular value decomposition,” Energy, vol. 36, no. 7, pp. 4259–4271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Gao and X. Liu, “Chaotic identification of BF ironmaking process I: the calculation of saturated correlative dimension,” Acta Metallurgica Sinica, vol. 40, no. 4, pp. 347–350, 2004. View at Scopus
  15. I. M. Carrión and E. A. Antúnez, “Thread-based implementations of the false nearest neighbors method,” Parallel Computing, vol. 35, no. 10-11, pp. 523–534, 2009. View at Publisher · View at Google Scholar
  16. J. Hite Jr., Learning in Chaos, Gulf Professional Publishing, Amsterdam, The Netherlands, 1999.
  17. Y. Hu and T. Chen, “Phase-space reconstruction technology of chaotic attractor based on C-C method,” Journal of Electronic Measurement and Instrument, vol. 35, no. 10-11, pp. 425–430, 2012.
  18. D. A. Fadare, “The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria,” Applied Energy, vol. 87, no. 3, pp. 934–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Salcedo-Sanz, A. M. Ángel M. Pérez-Bellido, E. G. Ortiz-García, A. Portilla-Figueras, L. Prieto, and D. Paredes, “Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction,” Renewable Energy, vol. 34, no. 6, pp. 1451–1457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. C. Dracopoulos, Evolutionary Learning Algorithms for Neural Adaptative Control, Springer, London, UK, 1997.
  21. J. Xue and Z. Shi, “Short-time traffic flow prediction based on chaos time series theory,” Journal of Transportation Systems Engineering and Information Technology, vol. 8, no. 5, pp. 68–72, 2008. View at Scopus
  22. H. Yang, J. Li, and F. Ding, “A neural network learning algorithm of chemical process modeling based on the extended Kalman filter,” Neurocomputing, vol. 70, no. 4–6, pp. 625–632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Bucy and K. D. Senne, “Digital synthesis of non-linear filters,” Automatica, vol. 7, no. 3, pp. 287–298, 1971. View at Scopus
  24. J. Wang and Y. Xie, “Solar radiation prediction based on phase space reconstruction of wavelet neural network,” Procedia Engineering, vol. 15, no. 1, pp. 4603–4607, 2011. View at Publisher · View at Google Scholar
  25. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, UK, 1997. View at MathSciNet
  26. T. E. Karakasidis and A. Charakopoulos, “Detection of low-dimensional chaos in wind time series,” Chaos, Solitons & Fractals, vol. 41, no. 4, pp. 1723–1732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Louka, G. Galanis, N. Siebert et al., “Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, no. 12, pp. 2348–2362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Poncela, P. Poncela, and J. R. Perán, “Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting,” Applied Energy, vol. 108, no. 12, pp. 349–362, 2013. View at Publisher · View at Google Scholar