Journal of Applied Mathematics
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision84 days
Acceptance to publication16 days
CiteScore2.300
Journal Citation Indicator-
Impact Factor-

Tensor




-
Transform

Read the full article

 Journal profile

Journal of Applied Mathematics publishes original research papers and review articles in all areas of applied, computational, and industrial mathematics.

 Editor spotlight

Chief Editor, Professor Theodore E. Simos, is based at Ulyanovsk State Technical University, Russia. His main research interest is the numerical analysis of differential equations.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A New Efficient Hybrid Method Based on FEM and FDM for Solving Burgers’ Equation with Forcing Term

This paper presents a study on the numerical solutions of the Burgers’ equation with forcing effects. The article proposes three hybrid methods that combine two-point, three-point, and four-point discretization in time with the Galerkin finite element method in space (TDFEM2, TDFEM3, and TDFEM4). These methods use backward finite difference in time and the finite element method in space to solve the Burgers’ equation. The resulting system of the nonlinear ordinary differential equations is then solved using MATLAB computer codes at each time step. To check the efficiency and accuracy, a comparison between the three methods is carried out by considering the three Burgers’ problems. The accuracy of the methods is expressed in terms of the error norms. The combined methods are advantageous for small viscosity and can produce highly accurate solutions in a shorter time compared to existing numerical schemes in the literature. In contrast to many existing numerical schemes in the literature developed to solve Burgers’ equation, the methods can exhibit the correct physical behavior for very small values of viscosity. It has been demonstrated that the TDFEM2, TDFEM3, and TDFEM4 can be competitive numerical methods for addressing Burgers-type parabolic partial differential equations arising in various fields of science and engineering.

Research Article

Bifurcation Analysis of the Dynamics in COVID-19 Transmission through Living and Nonliving Media

Transmission of COVID-19 occurs either through living media, such as interaction with a sufferer, or nonliving objects contaminated with the virus. Recovering sufferers and disinfectant spraying prevent interaction between people and virus become the treatment to overcome it. In this research, we formulate a new mathematical model as a three-dimensional ordinary differential equation system representing an interaction between viruses attached in nonliving media, susceptible, and infected subpopulations, including the treatment to investigate its effect. Disease-free, sterile-media endemic, and two nonsterile media endemic equilibriums exist in the model. The nonexistence of sterile-media equilibria interpreting the nonendemic condition is achieved by crossing the branch point bifurcation of the equilibria point as the infected subpopulation recovery rate increases. Continuation of the limit cycle generated at a Hopf bifurcation point as susceptible-coronavirus interaction prevention rate and period increase trigger two saddle-node bifurcations and a branch point bifurcation of cycle. Stable symmetric cycles with decreasing amplitude that make the dynamic of subpopulation easier to control start to be gained at the branch point bifurcation of cycle between the two saddle-node bifurcation points as the prevention rate increases. Some chaotic attractors which describe a complex and unpredictable pattern of the dynamic in the population are also found at inclination flip bifurcation by a continuation of a homoclinic orbit generated near the Bogdanov-Takens bifurcation point as the prevention rate increases while the recovery rate decreases. Increasing the recovery and prevention rate along with avoiding an increase of the prevention rate while the recovery rate decreases becomes the treatment to optimize the effort in overcoming COVID-19 transmission.

Research Article

Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization

This paper focuses on the impact of mosquito biting bias on the success of malaria intervention strategies. The initial model is developed considering the existence of symptomatic and asymptomatic humans, as well as vector bias. The model is then analyzed to demonstrate how the malaria-endemic equilibrium always exists and is globally asymptotically stable if the basic reproduction number is larger than one. On the other hand, malaria will always go extinct in the population if the basic reproduction number is less than one. For intervention analysis, the model is extended by considering mosquito repellent and hospitalization as control strategies. The control reproduction number is shown analytically. Using the Pontryagin maximum principle, we characterize our optimal control problem. Several scenarios are conducted to observe the dynamics of control variables under different circumstances. We found that the intervention of mosquito repellent and hospitalization together is the most cost-effective strategy to reduce the spread of malaria. Furthermore, we have shown that the more biased the vector attracted to infected individuals, the higher the cost needed to implement the control strategy.

Research Article

Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique

The KdV-Burgers equation is one of the most important partial differential equations, established by Korteweg and de Vries to describe the behavior of nonlinear waves and many physical phenomena. In this paper, we reformulate this problem in the sense of Caputo fractional derivative, whose physical meanings, in this case, are very evident by describing the whole time domain of physical processing. The main aim of this work is to present the analytical approximate series for the nonlinear Caputo fractional KdV-Burgers equation by applying the Laplace residual power series method. The main tools of this method are the Laplace transform, Laurent series, and residual function. Moreover, four attractive and satisfying applications are given and solved to elucidate the mechanism of our proposed method. The analytical approximate series solution via this sweet technique shows excellent agreement with the solution obtained from other methods in simple and understandable steps. Finally, graphical and numerical comparison results at different values of are provided with residual and relative errors to illustrate the behaviors of the approximate results and the effectiveness of the proposed method.

Research Article

Graph Crypto-Stego System for Securing Graph Data Using Association Schemes

Cryptography has recently become a critical area to research and advance in order to transmit information safely and securely among various entities, especially when the transmitted data is classified as crucial or important. This is due to the increase in the use of the Internet and other novel communication technology. Many businesses now outsource sensitive data to a third party because of the rise of cloud computing and storage. Currently, the key problem is to encrypt the data such that it may be stored on an unreliable server without sacrificing the ability to use it effectively. In this paper, we propose a graph encryption scheme by using cryptography and steganography. Data is encrypted using association schemes over finite abelian groups and then hiding the encrypted data behind randomly chosen cover image. We implemented and evaluated the efficiency of our constructions experimentally. We provide experimental results, statistical analysis, error analysis, and key analysis that demonstrates the appropriateness and efficiency of the proposed technique.

Research Article

An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives

In this paper, an efficient new technique is used for solving nonlinear fractional problems that satisfy specific criteria. This technique is referred to as the double conformable fractional Laplace-Elzaki decomposition method (DCFLEDM). This approach combines the double Laplace-Elzaki transform method with the Adomian decomposition method. The fundamental concepts and findings of the recently suggested transformation are presented. For the purpose of assessing the accuracy of our approach, we provide three examples and introduce the series solutions of these equations using DCLEDM. The results show that the proposed strategy is a very effective, reliable, and efficient approach for addressing nonlinear fractional problems using the conformable derivative.

Journal of Applied Mathematics
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision84 days
Acceptance to publication16 days
CiteScore2.300
Journal Citation Indicator-
Impact Factor-
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.