About this Journal Submit a Manuscript Table of Contents
Journal of Analytical Methods in Chemistry
Volume 2012 (2012), Article ID 364013, 6 pages
http://dx.doi.org/10.1155/2012/364013
Research Article

HPLC Method Determination of Isoliquiritin Apioside and Isoliquiritin in Rat Plasma for Application in Pharmacokinetic Study after an Oral Administration of Zhigancao Extract

1School of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
2Department of Medicinal Plant, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China

Received 27 September 2012; Revised 27 November 2012; Accepted 29 November 2012

Academic Editor: Shuang-Qing Zhang

Copyright © 2012 Yan-yun Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Chinese Pharmacopeia Committee, Pharmacopeia of People’s Republic of China, Chinese Medicine Science and Technology Publishing House, Beijing, China, 2010.
  2. J. K. Kim, S. M. Oh, H. S. Kwon, Y. S. Oh, S. S. Lim, and H. K. Shin, “Anti-inflammatory effect of roasted licorice extracts on lipopolysaccharide-induced inflammatory responses in murine macrophages,” Biochemical and Biophysical Research Communications, vol. 345, no. 3, pp. 1215–1223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Wojcikowski, L. Stevenson, D. Leach, H. Wohlmuth, and G. Gobe, “Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: a comparison using a sequential three-solvent extraction process,” Journal of Alternative and Complementary Medicine, vol. 13, no. 1, pp. 103–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. J. Choi, S. S. Lim, J. Y. Jung et al., “Blockade of nitroxidative stress by roasted licorice extracts in high glucose-exposed endothelial cells,” Journal of Cardiovascular Pharmacology, vol. 52, no. 4, pp. 344–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. I. K. Hwang, S. S. Lim, K. H. Choi et al., “Neuroprotective effects of roasted licorice, not raw form, on neuronal injury in gerbil hippocampus after transient forebrain ischemia,” Acta Pharmacologica Sinica, vol. 27, no. 8, pp. 959–965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Majima, T. Yamada, E. Tega, H. Sakurai, I. Saiki, and T. Tani, “Pharmaceutical evaluation of liquorice before and after roasting in mice,” Journal of Pharmacy and Pharmacology, vol. 56, no. 5, pp. 589–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Yazdi, S. Sardari, M. Sayyah, and M. H. Ezzati, “Evaluation of the anticonvulsant activity of the leaves of Glycyrrhiza glabra var. glandulifera grown in Iran, as a possible renewable source for anticonvulsant compounds,” Iranian Journal of Pharmaceutical Research, vol. 10, no. 1, pp. 75–82, 2011. View at Scopus
  8. P. Kaur, S. Kaur, N. Kumar, B. Singh, and S. Kumar, “Evaluation of antigenotoxic activity of isoliquiritin apioside from Glycyrrhiza glabra L.,” Toxicology In Vitro, vol. 23, no. 4, pp. 680–686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kobayashi, T. Miyamoto, I. Kimura, and M. Kimura, “Inhibitory effect of isoliquiritin, a compound in licorice root, on angiogenesis in vivo and tube formation in vitro,” Biological and Pharmaceutical Bulletin, vol. 18, no. 10, pp. 1382–1386, 1995. View at Scopus
  10. W. Wang, X. Hu, Z. Zhao et al., “Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 5, pp. 1179–1184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Fu, H. Li, X. Wang, F. S. C. Lee, and S. Cui, “Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase,” Journal of Agricultural and Food Chemistry, vol. 53, no. 19, pp. 7408–7414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Manach and J. L. Donovan, “Pharmacokinetics and metabolism of dietary flavonoids in humans,” Free Radical Research, vol. 38, no. 8, pp. 771–785, 2004.
  13. G. Williamson and C. Manach, “Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies,” The American journal of clinical nutrition, vol. 81, no. 1, pp. 243S–255S, 2005. View at Scopus
  14. T. Walle, “Absorption and metabolism of flavonoids,” Free Radical Biology and Medicine, vol. 36, no. 7, pp. 829–837, 2004. View at Publisher · View at Google Scholar
  15. A. J. Day, F. J. Cañada, J. C. Díaz et al., “Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase,” FEBS Letters, vol. 468, no. 2-3, pp. 166–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. E. U. Graefe, J. Wittig, S. Mueller et al., “Pharmacokinetics and bioavailability of quercetin glycosides in humans,” Journal of Clinical Pharmacology, vol. 41, no. 5, pp. 492–499, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Li, S. Liang, F. Du, and C. Li, “Simultaneous quantification of multiple licorice flavonoids in rat plasma,” Journal of the American Society for Mass Spectrometry, vol. 18, no. 4, pp. 778–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), and Center for Veterinary Medicine (CVM), Guidance for Industry-Bioanalytical Method Validation, Center for Drug Evaluation and Research (CDER), Rockville, Md, USA, 2001.
  19. S. Bankey, G. Tapadiya, J. Lamale, D. Jain, S. Saboo, and S. S. Khadabadi, “RP-HPLC method development and its validation for quantitative determination of rimonabant in human plasma,” Journal of Analytical Methods in Chemistry, vol. 2012, Article ID 625979, 4 pages, 2012. View at Publisher · View at Google Scholar