About this Journal Submit a Manuscript Table of Contents
Journal of Analytical Methods in Chemistry
Volume 2012 (2012), Article ID 450716, 10 pages
http://dx.doi.org/10.1155/2012/450716
Review Article

Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

1Department of Chemistry, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA
2Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3Center of Excellence in Innovation for Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

Received 30 November 2011; Accepted 28 January 2012

Academic Editor: Sibel A. Ozkan

Copyright © 2012 Supaporn Kradtap Hartwell and Kate Grudpan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IUPAC, Compendium of Chemical Terminology (The “Gold Book”), Blackwell Scientific Publications, Oxford, UK, 2nd edition, 1997. View at Publisher · View at Google Scholar
  2. G. L. Holliday, J. B. O. Mitchell, and J. M. Thornton, “Understanding the functional roles of amino acid residues in enzyme catalysis,” Journal of Molecular Biology, vol. 390, no. 3, pp. 560–577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Movassaghi and E. N. Jacobsen, “The simplest “enzyme”,” Science, vol. 298, no. 5600, pp. 1904–1905, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. I. H. Segal, Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, John Wiley & Sons, New York, NY, USA, 2nd edition, 1976.
  5. J. P. Goddard and J. L. Reymond, “Recent advances in enzyme assays,” Trends in Biotechnology, vol. 22, no. 7, pp. 363–370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Allison and D. L. Rurich, Methods in Enzymology, Enzyme Kinetics and Mechanism Part A Initial Rate and Inhibitor Methods, vol. 63, Academic Press, New York, NY, USA, 1979.
  7. X. Zhou, R. Medhekar, and M. D. Toney, “A continuous-flow system for high-precision kinetics using small volumes,” Analytical Chemistry, vol. 75, no. 15, pp. 3681–3687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Mervartová, M. Polášek, and J. Martínez Calatayud, “Recent applications of flow-injection and sequential-injection analysis techniques to chemiluminescence determination of pharmaceuticals,” Journal of Pharmaceutical and Biomedical Analysis, vol. 45, no. 3, pp. 367–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kolev and I. McKelvie, Advances in Flow Injection Analysis and Related Techniques, Elsevier, New York, NY, USA, 2008.
  10. G. Abate, J. Lichtig, and J. C. Masini, “Construction and evaluation of a flow-through cell adapted to a commercial static mercury drop electrode (SMDE) to study the adsorption of Cd(II) and Pb(II) on vermiculite,” Talanta, vol. 58, no. 3, pp. 433–443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Wang and S. Huang, “Design of a flow-through voltammetric sensor based on an antimony-modified silver electrode for determining litholrubine B in cosmetics,” Journal of Analytical Methods in Chemistry, vol. 2011, Article ID 896978, 7 pages, 2011. View at Publisher · View at Google Scholar
  12. L. T. Di Benedetto and T. Dimitrakopoulos, “Evaluation of a new wall-jet flow-through cell for commercial ion-selective electrodes in flow injection potentiometry,” Electroanalysis, vol. 9, no. 2, pp. 179–182, 1997. View at Scopus
  13. R. M. Smith, K. W. Jackson, and K. M. Aldous, “Design and evaluation of a fiber optic fluorometric flow cell,” Aanalytical Chemistry, vol. 49, no. 13, pp. 2051–2053, 1977. View at Scopus
  14. Hellma, Product cells for flow through measurements, http://www.hellma-analytics.com/.
  15. BASi LCEC Flowcells, http://www.basinc.com/products/ec/flowcells.php.
  16. K. Vahl, H. Kahlert, D. Böttcher et al., “A potential high-throughput method for the determination of lipase activity by potentiometric flow injection titrations,” Analytica Chimica Acta, vol. 610, no. 1, pp. 44–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Ogończyk and R. Koncki, “Potentiometric flow-injection system for determination of alkaline phosphatase in human serum,” Analytica Chimica Acta, vol. 600, no. 1-2, pp. 194–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Caccuri, G. Antonini, P. G. Board et al., “Proton release on binding of glutathione to Alpha, Mu and Delta class glutathione transferases,” Biochemical Journal, vol. 344, no. 2, pp. 419–425, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhang and A. E. G. Cass, “Kinetic study of site directed and randomly immobilized his-tag alkaline phosphatase by flow injection chemiluminescence,” Journal of Molecular Recognition, vol. 19, no. 3, pp. 243–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Johnson and R. L. Petty, “Determination of phosphate in seawater by flow injection analysis with injection of reagent,” Analytical Chemistry, vol. 54, no. 7, pp. 1185–1187, 1982. View at Scopus
  21. M. A. Feres, P. R. Fortes, E. A. G. Zagatto, J. L. M. Santos, and J. L. F. C. Lima, “Multi-commutation in flow analysis: recent developments and applications,” Analytica Chimica Acta, vol. 618, no. 1, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. F. Lavorante, M. A. Feres, and B. F. Reis, “Multi-commutation in flow analysis: a versatile tool for the development of the automatic analytical procedure focused on the reduction of reagent consumption,” Spectroscopy Letters, vol. 39, no. 6, pp. 631–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Kyaw, T. Fujiwara, H. Inoue, Y. Okamoto, and T. Kumamaru, “Reversed micellar mediated luminol chemiluminescence detection of iron(II, III) combined with on-line solvent extraction using 8-quinolinol,” Analytical Sciences, vol. 14, no. 1, pp. 203–207, 1998. View at Scopus
  24. T. Fujiwara, K. Murayama, and T. ImdadullahKumamaru, “Automated method for the selective determination of gold by online solvent extraction and reversed micellar-mediated luminal chemiluminescence detection,” Microchemical Journal, vol. 49, no. 2-3, pp. 183–193, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Kritsunankul and J. Jakmunee, “Simultaneous determination of some food additives in soft drinks and other liquid foods by flow injection on-line dialysis coupled to high performance liquid chromatography,” Talanta, vol. 84, no. 5, pp. 1342–1349, 2011. View at Publisher · View at Google Scholar
  26. O. Kritsunankul, B. Pramote, and J. Jakmunee, “Flow injection on-line dialysis coupled to high performance liquid chromatography for the determination of some organic acids in wine,” Talanta, vol. 79, no. 4, pp. 1042–1049, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Cabal, J. Bajgar, and J. Kassa, “Evaluation of flow injection analysis for determination of cholinesterase activities in biological material,” Chemico-Biological Interactions, vol. 187, no. 1–3, pp. 225–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Schöringhumer and M. Cichna-Markl, “Sample clean-up with sol-gel enzyme and immunoaffinity columns for the determination of bisphenol A in human urine,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 361–369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Maeder, J. L. Veuthey, M. Pelletier, and W. Haerdi, “Spectrophotometric determinatin of ethanol in blood using a flow-injection system with an immobilized enzyme (alcohol dehydrogenase) reactor coupled to an on-line dialyser,” Analytica Chimica Acta, vol. 231, no. 1, pp. 115–119, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Miró and W. Frenzel, “Automated membrane-based sampling and sample preparation exploiting flow-injection analysis,” Trends in Analytical Chemistry, vol. 23, no. 9, pp. 624–636, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Ogbomo, R. Kittsteiner-Eberle, U. Englbrecht, U. Prinzing, J. Danzer, and H. L. Schmidt, “Flow-injection systems for the determination of oxidoreductase substrates: applications in food quality control and process monitoring,” Analytica Chimica Acta, vol. 249, no. 1, pp. 137–143, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Calleri, C. Temporini, E. Perani et al., “Development of a bioreactor based on trypsin immobilized on monolithic support for the on-line digestion and identification of proteins,” Journal of Chromatography A, vol. 1045, no. 1-2, pp. 99–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Economou, P. Panoutsou, and D. G. Themelis, “Enzymatic chemiluminescent assay of glucose by sequential-injection analysis with soluble enzyme and on-line sample dilution,” Analytica Chimica Acta, vol. 572, no. 1, pp. 140–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Beauchemin and A. A. Specht, “Analysis of river water by ICP-MS with on-line preconcentration using flow injection,” Canadian Journal of Analytical Sciences and Spectroscopy, vol. 43, no. 2, pp. 43–48, 1998. View at Scopus
  35. R. Purohit and S. Devi, “Determination of nanogram levels of zirconium by chelating ion exchange and on-line preconcentration in flow injection UV-visible spectrophotometry,” Talanta, vol. 44, no. 3, pp. 319–326, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Di and D. E. Davey, “Trace gold determination by on-line preconcentration with flow injection atomic absorption spectrometry,” Talanta, vol. 41, no. 4, pp. 565–571, 1994. View at Scopus
  37. M. Miró, S. Kradtap Hartwell, J. Jakmunee, K. Grudpan, and E. H. Hansen, “Recent developments in automatic solid-phase extraction with renewable surfaces exploiting flow-based approaches,” Trends in Analytical Chemistry, vol. 27, no. 9, pp. 749–761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kradtap Hartwell, K. Grudpan, and G. D. Christian, “Bead injection with a simple flow-injection system: an economical alternative for trace analysis,” Trends in Analytical Chemistry, vol. 23, no. 9, pp. 619–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. M. Oliveira, M. A. Segundo, J. L.F.C. Lima, M. Miró, and V. Cerdà, “On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach,” Journal of Chromatography A, vol. 1217, no. 22, pp. 3575–3582, 2010. View at Publisher · View at Google Scholar
  40. Fialab.com, “Principle-sequential injection,” http://www.flowinjection.com/30.%20Principle%20-%20Sequential%20Injection.html.
  41. Y. Chen, A. D. Carroll, L. Scampavia, and J. Ruzicka, “Automated method, based on micro-sequential injection, for the study of enzyme kinetics and inhibition,” Analytical Sciences, vol. 22, no. 1, pp. 9–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kradtap Hartwell and K. Grudpan, “Flow based immuno/bioassay and trends in micro-immuno/biosensors,” Microchimica Acta, vol. 169, no. 3, pp. 201–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Economou, “Sequential-injection analysis (SIA): a useful tool for on-line sample-handling and pre-treatment,” Trends in Analytical Chemistry, vol. 24, no. 5, pp. 416–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. C. I. C. Silvestre, P. C. A. G. Pinto, M. A. Segundo, M. L. M. F. S. Saraiva, and J. L. F. C. Lima, “Enzyme based assays in a sequential injection format: a review,” Analytica Chimica Acta, vol. 689, no. 2, pp. 160–177, 2011. View at Publisher · View at Google Scholar
  45. Fialab Products, “SI-Lab on Valve,” http://www.fialab.com/21.%20SI%20-%20Lab%20on%20Valve.html.
  46. C. M. Schulz, L. Scampavia, and J. Ruzicka, “Real-time monitoring of lactate extrusion and glucose consumption of cultured cells using a lab-on-valve system,” Analyst, vol. 127, no. 12, pp. 1583–1588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Grudpan, “Some recent developments on cost-effective flow-based analysis,” Talanta, vol. 64, no. 5, pp. 1084–1090, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Grudpan, S. Khonyoung, S. Kradtap Hartwell, S. Lapanantnoppakhun, and J. Jakmunee, “Down scaling: from operation on lab bench space to manipulation at a valve,” Journal of Flow Injection Analysis, vol. 23, no. 2, pp. 94–101, 2006.
  49. D. Huh, J. H. Bahng, Y. Ling et al., “Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification,” Analytical Chemistry, vol. 79, no. 4, pp. 1369–1376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Girardo, M. Cecchini, F. Beltram, R. Cingolani, and D. Pisignano, “Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels,” Lab on a Chip, vol. 8, no. 9, pp. 1557–1563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. C. Rife, M. I. Bell, J. S. Horwitz, M. N. Kabler, R. C. Y. Auyeung, and W. J. Kim, “Miniature valveless ultrasonic pumps and mixers,” Sensors and Actuators A, vol. 86, no. 1-2, pp. 135–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Nashida, W. Satoh, J. Fukuda, and H. Suzuki, “Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions,” Biosensors and Bioelectronics, vol. 22, no. 12, pp. 3167–3173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Wada, Y. Sawa, M. Morimoto, T. Ishizuki, and G. Nakagawa, “Effects of manifold components on peak profiles in flow-injection analysis,” Analytica Chimica Acta, vol. 220, no. C, pp. 293–297, 1989. View at Scopus
  54. D. L. Zechel, L. Konermann, S. G. Withers, and D. J. Douglas, “Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry,” Biochemistry, vol. 37, no. 21, pp. 7664–7669, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Konermann, B. A. Collings, and D. J. Douglas, “Cytochrome c folding kinetics studied by time-resolved electrospray ionization mass spectrometry,” Biochemistry, vol. 36, no. 18, pp. 5554–5559, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Konermann, “Monitoring reaction kinetics in solution by continuous-flow methods: the effects of convection and molecular diffusion under laminar flow conditions,” Journal of Physical Chemistry A, vol. 103, no. 36, pp. 7210–7216, 1999. View at Scopus
  57. J. Hirata, F. Ariese, C. Gooijer, and H. Irth, “Continuous-flow protease assay based on fluorescence resonance energy transfer,” Analytica Chimica Acta, vol. 478, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Illeová, M. Polakovič, V. Štefuca, P. Ačai, and M. Juma, “Experimental modelling of thermal inactivation of urease,” Journal of Biotechnology, vol. 105, no. 3, pp. 235–243, 2003. View at Publisher · View at Google Scholar
  59. M. Carlsen, J. Nielsen, and J. Villadsen, “Kinetic studies of acid-inactivation of α-amylase from Aspergillus oryzae,” Chemical Engineering Science, vol. 51, no. 1, pp. 37–43, 1996. View at Scopus
  60. J. M. Sendra and J. V. Carbonell, “A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanism endo-enzymes,” Biotechnology and Bioengineering, vol. 57, no. 4, pp. 387–393, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Shan, I. D. McKelvie, and B. T. Hart, “Characterization of immobilized Escherichia coli alkaline phosphatase reactors in flow injection analysis,” Analytical Chemistry, vol. 65, no. 21, pp. 3053–3060, 1993. View at Scopus
  62. L. Yan, Y. Zhu, S. He, and Z. Cao, “Effect of static magnetic field on activity of immobilized α-amylase,” Chinese Science Bulletin, vol. 42, no. 2, pp. 127–130, 1997. View at Scopus
  63. M. Sánchez-Cabezudo, J. M. Fernández-Romero, and M. D. L. de Castro, “Determination of Michaelis-Menten and inhibitor constants by an open-closed flow injection approach (Application to the alkaline phosphatase/theophylline system),” Talanta, vol. 42, no. 8, pp. 1103–1110, 1995. View at Scopus
  64. J. M. Hungerford, G.D. Christian, J. Ruzicka, and J. C. Giddings, “Reaction rate measurement by flow injection analysis using the gradient stopped-flow method,” Analytical Chemistry, vol. 57, no. 9, pp. 1794–1798, 1985. View at Publisher · View at Google Scholar
  65. B. Faller, M. Cadène, and J. G. Bieth, “Demonstration of a two-step reaction mechanism for the inhibition of heparin-bound neutrophil elastase by α1-proteinase inhibitor,” Biochemistry, vol. 32, no. 35, pp. 9230–9235, 1993. View at Scopus
  66. K. S. Anderson, J. A. Sikorski, and K. A. Johnson, “Evaluation of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements,” Biochemistry, vol. 27, no. 5, pp. 1604–1610, 1988. View at Scopus
  67. F. S. Chang, P. C. Chen, R. L. C. Chen, F. M. Lu, and T. J. Cheng, “Real-time assay of immobilized tannase with a stopped-flow conductometric device,” Bioelectrochemistry, vol. 69, no. 1, pp. 113–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Castañón-Fernández, M. T. Fernández-Abedul, and A. Costa-García, “Kinetic determination of acid phosphatase activity by double injection flow analysis with electrochemical detection,” Analytica Chimica Acta, vol. 413, no. 1-2, pp. 103–108, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. B. D. Grant and J. A. Adams, “Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques,” Biochemistry, vol. 35, no. 6, pp. 2022–2029, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. P. H. Liang, A. Kohen, T. Baasov, and K. S. Anderson, “Catalytic mechanism of Kdo8P synthase. Pre-steady-state kinetic analysis using rapid chemical quench flow methods,” Bioorganic and Medicinal Chemistry Letters, vol. 7, no. 19, pp. 2463–2468, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. K. S. Anderson, J. A. Sikorski, and K. A. Johnson, “A tetrahedral intermediate in the EPSP synthase reaction observed by rapid quench kinetics,” Biochemistry, vol. 27, no. 19, pp. 7395–7406, 1988. View at Scopus
  72. Kin Tek Corporation, USA, http://www.kintek-corp.com/methods/quenchflow.php.
  73. TgK Scientific Limited, UK, http://www.hi-techsci.com/techniques/quenchflow.
  74. S. W. Hillard and K. K. Stewart, “A bypass trapped-flow analysis system evaluation of enzyme kinetic parameters with a coupled enzyme assay and fluorescence detection,” Talanta, vol. 45, no. 3, pp. 507–512, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. A. C. F. Vida, M. K. Sasaki, T. F. Gomes, C. R. Silva, M. A. Feres, and E. A. G. Zagatto, “Zone trapping/merging zones in flow analysis: a novel approach for rapid assays involving relatively slow chemical reactions,” Talanta, vol. 85, no. 1, pp. 259–263, 2011. View at Publisher · View at Google Scholar
  76. K. K. Stewart and S. W. Hillard, “ByT-FAS (Bypass trapped-flow analysis system),” Talanta, vol. 45, no. 3, pp. 493–505, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Kradtap Hartwell, A. Boonmalai, P. Kongtawelert, and K. Grudpan, “Sequential injection-immunoassay system with a plain glass capillary reactor for the assay of hyaluronan,” Analytical sciences, vol. 26, no. 1, pp. 69–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Kradtap Hartwell, N. Wannaprom, P. Kongtawelert, and K. Grudpan, “Sequential injection-capillary immunoassay system for determination of sialoglycoconjugates,” Talanta, vol. 79, no. 5, pp. 1209–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Jakmunee, L. Pathimapornlert, S. Kradtap Hartwell, and K. Grudpan, “Novel approach for mono-segmented flow micro-titration with sequential injection using a lab-on-valve system: a model study for the assay of acidity in fruit juices,” Analyst, vol. 130, no. 3, pp. 299–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Ponhong, S. Kradtap Hartwell, and K. Grudpan, “Sequential injection Lab-at-valve (SI-LAV) segmented flow system for kinetic study of an enzyme,” Talanta, vol. 85, no. 1, pp. 804–808, 2011. View at Publisher · View at Google Scholar
  81. C. Wang, S. J. Li, Z. Q. Wu, J. J. Xu, H. Y. Chen, and X. H. Xia, “Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device,” Lab on a Chip, vol. 10, no. 5, pp. 639–646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Yamaguchi, M. Deguchi, and J. Wakasugi, “Flat-chip microanalytical enzyme sensor for salivary amylase activity,” Biomedical Microdevices, vol. 7, no. 4, pp. 295–300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Morimoto, S. Upadhyay, T. Higashiyama et al., “Electrochemical microsystem with porous matrix packed-beds for enzyme analysis,” Sensors and Actuators B, vol. 124, no. 2, pp. 477–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Qiao, L. Qi, X. Mu, and Y. Chen, “Monolith and coating enzymatic microreactors of l-asparaginase: kinetics study by MCE-LIF for potential application in acute lymphoblastic leukemia (ALL) treatment,” Analyst, vol. 136, no. 10, pp. 2077–2083, 2011. View at Publisher · View at Google Scholar
  85. R. Bleul, M. Ritzi-Lehnert, J. Höth et al., “Compact, cost-efficient microfluidics-based stopped-flow device,” Analytical and Bioanalytical Chemistry, vol. 399, no. 3, pp. 1117–1125, 2011. View at Publisher · View at Google Scholar
  86. J. Svobodová, S. Mathur, A. Muck, T. Letzel, and A. Svatoš, “Microchip-ESI-MS determination of dissociation constant of the lysozyme—NAG3 complex,” Electrophoresis, vol. 31, no. 15, pp. 2680–2685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Yanagisawa and D. Dutta, “Kinetic ELISA in microfluidic channels,” Biosensors, vol. 1, no. 2, pp. 58–69, 2011. View at Publisher · View at Google Scholar
  88. S. Juul, Y.-P. Ho, J. Koch et al., “Detection of single enzymatic events in rare or single cells using microfluidics,” ACS Nano, vol. 5, no. 10, pp. 8305–8310, 2011. View at Publisher · View at Google Scholar
  89. J. L. Reymond, “Substrate arrays for fluorescence-based enzyme fingerprinting and high-throughput screening,” Annals of the New York Academy of Sciences, vol. 1130, pp. 12–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Grünhut, M. Garrido, M. E. Centurión, and B. S. F. Band, “Kinetic approach for the enzymatic determination of levodopa and carbidopa assisted by multivariate curve resolution-alternating least squares,” Analytica Chimica Acta, vol. 673, no. 1, pp. 33–39, 2010. View at Publisher · View at Google Scholar
  91. Y. Ni, N. Deng, and S. Kokot, “Simultaneous enzymatic kinetic determination of carbamate pesticides with the aid of chemometrics,” International Journal of Environmental Analytical Chemistry, vol. 89, no. 13, pp. 939–955, 2009. View at Publisher · View at Google Scholar · View at Scopus