About this Journal Submit a Manuscript Table of Contents
Journal of Analytical Methods in Chemistry
Volume 2012 (2012), Article ID 452949, 10 pages
http://dx.doi.org/10.1155/2012/452949
Research Article

Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis

1Chemistry Department, University of Lleida, 25198 Lleida, Spain
2Food Technology Department, University of Lleida, 25198 Lleida, Spain

Received 30 November 2011; Revised 4 February 2012; Accepted 15 February 2012

Academic Editor: Boryana M. Nikolova-Damyanova

Copyright © 2012 Mireia Oromí-Farrús et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Bourne, M. Stacey, J. C. Tatlow, and R. Worrall, “Studies of trifluoroacetic acid—part 15. Further investigations on the reactions of acyl trifluoroacetates with hydroxy-compounds,” Journal of the Chemical Society, pp. 3268–3282, 1958. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Walther and T. Netscher, “Design and development of chiral reagents for the chromatographic e.e. determination of chiral alcohols,” Chirality, vol. 8, no. 5, pp. 397–401, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Kataoka, K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu, “Novel bioreduction system for the production of chiral alcohols,” Applied Microbiology and Biotechnology, vol. 62, no. 5-6, pp. 437–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Rekoske, “Chiral separations,” AIChE Journal, vol. 47, no. 1, pp. 2–5, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Schurig, “Separation of enantiomers by gas chromatography,” Journal of Chromatography A, vol. 906, no. 1-2, pp. 275–299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Juvancz and P. Petersson, “Enantioselective gas chromatography,” Journal of Microcolumn Separations, vol. 8, no. 2, pp. 99–114, 1996. View at Scopus
  7. J. Kang, D. Wistuba, and V. Schurig, “Recent progress in enantiomeric separation by capillary electrochromatography,” Electrophoresis, vol. 23, no. 22-23, pp. 4005–4021, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Chankvetadze, “Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins,” Chemical Society Reviews, vol. 33, no. 6, pp. 337–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. C. P. Kapnissi-Christodoulou, X. Zhu, and I. M. Warner, “Analytical separations in open-tubular capillary electrochromatography,” Electrophoresis, vol. 24, no. 22-23, pp. 3917–3934, 2003. View at Scopus
  10. G. Terfloth, “Enantioseparations in super- and subcritical fluid chromatography,” Journal of Chromatography A, vol. 906, no. 1-2, pp. 301–307, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Liu, A. W. Lantz, and D. W. Armstrong, “High efficiency liquid and super-/subcritical fluid-based enantiomeric separations: an overview,” Journal of Liquid Chromatography and Related Technologies, vol. 27, no. 7–9, pp. 1121–1178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. M. Maier, P. Franco, and W. Lindner, “Separation of enantiomers: needs, challenges, perspectives,” Journal of Chromatography A, vol. 906, no. 1-2, pp. 3–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sponsier and M. Biedermann, “Optimization of chiral separations using capillary gas chromatography,” International Chromatography Laboratory, vol. 8, pp. A–F, 1998.
  14. S. C. Moldoneanu and V. David, “Chemical reactions used in derivatization. 18.3. Acetylation reactions,” Journal of Chromatography Library, pp. 569–576, 2002.
  15. J. S. Fritz and G. H. Schenk, “Acid-catalyzed acetylation of organic hydroxyl groups,” Analytical Chemistry, vol. 31, no. 11, pp. 1808–1812, 1959. View at Scopus
  16. G. Stork, T. Takahashi, I. Kawamoto, and T. Suzuki, “Total synthesis of prostaglandin F2α by chirality transfer from D-glucose,” Journal of the American Chemical Society, vol. 100, no. 26, pp. 8272–8273, 1978. View at Scopus
  17. K. L. Chandra, P. Saravanan, R. K. Singh, and V. K. Singh, “Lewis acid catalyzed acylation reactions: scope and limitations,” Tetrahedron, vol. 58, no. 7, pp. 1369–1374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Servrin and A. Krief, “Regioselective ad [C,C] connective routes to oxetanes and tetrahydrofuranes,” Tetrahedron Letters, vol. 21, no. 6, pp. 585–586, 1980. View at Scopus
  19. A. Orita, C. Tanahashi, A. Kakuda, and J. Otera, “Highly efficient and versatile acylation of alcohols with Bi(OTf)3 as catalyst,” Angewandte Chemie, vol. 39, no. 16, pp. 2877–2879, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Nakae, I. Kusaki, and T. Sato, “Lithium perchlorate catalyzed acetylation of alcohols under mild reaction conditions,” Synlett, no. 10, pp. 1584–1586, 2001. View at Scopus
  21. P. Phukan, “Iodine as an extremely powerful catalyst for the acetylation of alcohols under solvent-free conditions,” Tetrahedron Letters, vol. 45, no. 24, pp. 4785–4787, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Ren and C. Cai, “Molecular iodine in ionic liquid: a green catalytic system for esterification and transesterification,” Synthetic Communications, vol. 40, no. 11, pp. 1670–1676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Hussain, D. Shahwar, M. N. Hassan, M. N. Tahir, M. S. Iqbalc, and M. Sher, “An efficient esterification of pullulan using carboxylic acid anhydrides activated with iodine,” Collection of Czechoslovak Chemical Communications, vol. 75, no. 1, pp. 133–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. N. Cheng, M. K. Dowd, R. L. Shogren, and A. Biswas, “Iodine-catalyzed synthesis of mixed cellulose esters,” American Chemical Society, Division of Polymer Chemistry, vol. 51, pp. 29–30, 2010.
  25. A. K. Verma, T. Aggarwal, V. Rustagi, and R. C. Larock, “Iodine-catalyzed and solvent-controlled selective electrophilic cyclization and oxidative esterification of ortho-alkynyl aldehydes,” Chemical Communications, vol. 46, no. 23, pp. 4064–4066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. A. Jones, R. Davidson, A. T. Tran, N. Smith, and M. Carmen Galan, “Iodine-catalyzed one-pot acetalation-esterification reaction for the preparation of orthogonally protected glycosides,” Carbohydrate Research, vol. 345, no. 13, pp. 1842–1845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Ramalinga, P. Vijayalakshmi, and T. N. B. Kaimal, “A mild and efficient method for esterification and transesterification catalyzed by iodine,” Tetrahedron Letters, vol. 43, no. 5, pp. 879–882, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. P. Chavan, K. Shivasankar, R. Sivappa, and R. Kale, “Zinc mediated transesterification of β-ketoesters and coumarin synthesis,” Tetrahedron Letters, vol. 43, no. 47, pp. 8583–8586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. P. Chavan, R. R. Kale, K. Shivasankar, S. I. Chandake, and S. B. Benjamin, “A simple and efficient method for transesterification of β-ketoesters catalysed by iodine,” Synthesis, no. 17, pp. 2695–2698, 2003. View at Scopus
  30. N. Ahmed and J. E. van Lier, “Molecular iodine in isopropenyl acetate (IPA): a highly efficient catalyst for the acetylation of alcohols, amines and phenols under solvent free conditions,” Tetrahedron Letters, vol. 47, no. 30, pp. 5345–5349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Jereb, D. Vražič, and M. Zupan, “Dual behavior of alcohols in iodine-catalyzed esterification under solvent-free reaction conditions,” Tetrahedron Letters, vol. 50, no. 20, pp. 2347–2352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. IUPAC Compendium of Chemical Terminology, 2nd edition, 1997.
  33. I. D. Smith and C. F. Simpson, “Investigation into the GC separation of enantiomers on a trifluoroacetylated cyclodextrin—1. Effect of analyte structure on stereoselectivity for alcohols,” Journal of High Resolution Chromatography, vol. 15, pp. 800–806, 1992.
  34. “Chiral Cyclodextrin Capillary Columns,” Supelco Bulletin 887, 1998.
  35. A Guide to the Analysis of Chiral Compounds by GC, Resteck Corporation, 1997.
  36. M. A. Dessoy, J. De, E. M. Ethur, E. C. M. Dessoy, and A. F. Morel, “Heptakis(6-O-ethyl-2,3-O-pentyl)-β-cyclodextrin: a new chiral stationary phases for capillary GC,” HRC Journal of High Resolution Chromatography, vol. 22, no. 4, pp. 242–244, 1999. View at Scopus
  37. AIST, Integrated Spectral Database System of Organic Compounds, National Institute of Advanced Industrial Science and Technology, Japan, 2011.
  38. WSS: Spectral data were obtained from Wiley Subscription Services, Inc. USA.
  39. J. Krupcik, E. Benicka, P. Majek, I. Skacani, and P. Sandra, “Relationship between structure and chromatographic behaviour of secondary alcohols and their derivatives separated by high-resolution gas chromatography with a modified β-cyclodextrin stationary phase,” Journal of Chromatography A, vol. 665, no. 1, pp. 175–184, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. Stalcup, K. H. Ekborg, M. P. Gasper, and D. W. Armstrong, “Enantiomeric separation of chiral components reported to be in coffee, tea, or cocoa,” Journal of Agricultural and Food Chemistry, vol. 41, no. 10, pp. 1684–1689, 1993. View at Scopus
  41. C. Bicchi, A. D'Amato, V. Manzin, and P. Rubiolo, “Cyclodextrin derivatives in GC separation of racemic mixtures of volatiles—part 11. Some applications of cyclodextrin derivatives in GC enantioseparations of essential oil components,” Flavour and Fragrance Journal, vol. 12, no. 2, pp. 55–61, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. H. R. Kim, H. S. Oh, H. J. Park, J. N. Kim, D. J. Jeon, and E. K. Ryu, “A facile 1,2-acetoxychlorination reaction of olefins by using the N,N-dimethtylacetamide/hydrogen chloride/m-chloroperbenzoic acid (or oxone) system,” Synthetic Communications, vol. 28, no. 1, pp. 159–165, 1998. View at Scopus
  43. W. Y. Li, H. L. Jin, and D. W. Armstrong, “2,6-Di-O-pentyl-3-O-trifluoroacetyl cyclodextrin liquid stationary phases for capillary gas chromatographic separation of enantiomers,” Journal of Chromatography, vol. 509, no. 2, pp. 303–324, 1990. View at Publisher · View at Google Scholar · View at Scopus