About this Journal Submit a Manuscript Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012 (2012), Article ID 125071, 6 pages
http://dx.doi.org/10.1155/2012/125071
Research Article

Analysis of Water and Hydrogen Bond Dynamics at the Surface of an Antifreeze Protein

Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, NV 89557, USA

Received 14 December 2011; Accepted 7 March 2012

Academic Editor: Keli Han

Copyright © 2012 Yao Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Tobias, N. Sengupta, and M. Tarek, “Molecular dynamics simulation studies of coupled protein and water dynamics,” in Proteins: Energy, Heat and Signal Flow, D. M. Leitner and J. E. Straub, Eds., pp. 361–386, Taylor & Francis, Boca Raton, Fla, USA, 2009.
  2. M. E. Johnson, C. Malardier-Jugroot, R. K. Murarka, and T. Head-Gordon, “Hydration water dynamics near biological interfaces,” Journal of Physical Chemistry B, vol. 113, no. 13, pp. 4082–4092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Bizzarri and S. Cannistraro, “Molecular dynamics of water at the protein-solvent interface,” Journal of Physical Chemistry B, vol. 106, no. 26, pp. 6617–6633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Steinbach and B. R. Brooks, “Protein hydration elucidated by molecular dynamics simulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 9135–9139, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. D. N. LeBard and D. V. Matyushov, “Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface,” Journal of Physical Chemistry B, vol. 114, no. 28, pp. 9246–9258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Yu, J. Park, and D. M. Leitner, “Thermodynamics of protein hydration computed by molecular dynamics and normal modes,” Journal of Physical Chemistry B, vol. 107, no. 46, pp. 12820–12828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Despa, A. Fernández, and R. S. Berry, “Publisher's note—dielectric modulation of biological water,” Physical Review Letters, vol. 93, no. 26, Article ID 228104, 1 pages, 2004. View at Publisher · View at Google Scholar
  8. R. Gnanasekaran, J. K. Agbo, and D. M. Leitner, “Communication maps computed for homodimeric hemoglobin: computational study of water-mediated energy transport in proteins,” Journal of Chemical Physics, vol. 135, no. 6, Article ID 065103, 10 pages, 2011. View at Publisher · View at Google Scholar
  9. R. Gnanasekaran, Y. Xu, and D. M. Leitner, “Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin,” Journal of Physical Chemistry B, vol. 114, no. 50, pp. 16989–16996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Lervik, F. Bresme, S. Kjelstrup, D. Bedeaux, and J. M. Rubi, “Heat transfer in protein-water interfaces,” Physical Chemistry Chemical Physics, vol. 12, no. 7, pp. 1610–1617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Leitner, M. Havenith, and M. Gruebele, “Biomolecule large-amplitude motion and solvation dynamics: modelling and probes from THz to X-rays,” International Reviews in Physical Chemistry, vol. 25, no. 4, pp. 553–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Mitra, N. Smolin, R. Ravindra, C. Royer, and R. Winter, “Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution—experiments and theoretical interpretation,” Physical Chemistry Chemical Physics, vol. 8, no. 11, pp. 1249–1265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Pal, J. Peon, and A. H. Zewail, “Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 1763–1768, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Doster and M. Settles, “The dynamical transition in proteins: the role of hydrogen bonds,” in Hydration Processes in Biology: Experimental and Theoretical Approaches, M.-C. Bellissent-Funel, Ed., pp. 177–195, IOS Press, Amsterdam, The Netherlands, 1999.
  15. E. Persson and B. Halle, “Cell water dynamics on multiple time scales,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6266–6271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Frauenfelder, P. W. Fenimore, G. Chen, and B. H. McMahon, “Protein folding is slaved to solvent motions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15469–15472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. P. Graether, Biochemistry and Function of Antifreeze Proteins, Nova Science, New York, NY, USA, 2011.
  18. J. G. Duman, K. R. Walters, T. Sformo, et al., “Antifreeze and ice-nucleator proteins,” in Low Temperature Biology of Insects, D. L. Delinger and R. E. Lee, Eds., pp. 59–90, Cambridge University Press, New York, NY, USA, 2010.
  19. B. Moffatt, V. Ewart, and A. Eastman, “Cold comfort: plant antifreeze proteins,” Physiologia Plantarum, vol. 126, no. 1, pp. 5–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Pham, R. Dahiya, and B. Rubinsky, “An in vivo study of antifreeze protein adjuvant cryosurgery,” Cryobiology, vol. 38, no. 2, pp. 169–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. DeVries and D. E. Wohlschlag, “Freezing resistance in some antarctic fishes,” Science, vol. 163, no. 3871, pp. 1073–1075, 1969. View at Scopus
  22. J. A. Raymond and A. L. DeVries, “Adsorption inhibition as a mechanism of freezing resistance in polar fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 6, pp. 2589–2593, 1977. View at Scopus
  23. J. A. Raymond, P. W. Wilson, and A. L. DeVries, “Inhibition of growth of nonbasal planes in ice by fish antifreezes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 881–885, 1989. View at Scopus
  24. C. A. Knight, C. C. Cheng, and A. L. DeVries, “Adsorption of α-helical antifreeze peptides on specific ice crystal surface planes,” Biophysical Journal, vol. 59, no. 2, pp. 409–418, 1991. View at Scopus
  25. J. Duman and A. L. DeVries, “Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, pseudopleuronectes americanus,” Comparative Biochemistry and Physiology, vol. 54, no. 3, pp. 375–380, 1976. View at Scopus
  26. A. D. Haymet, L. G. Ward, M. M. Harding, and C. A. Knight, “Valine substituted winter flounder “antifreeze”: preservation of ice growth hysteresis,” FEBS Letters, vol. 430, no. 3, pp. 301–306, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ebbinghaus, K. Meister, B. Born, A. L. Devries, M. Gruebele, and M. Havenith, “Antifreeze glycoprotein activity correlates with long-range protein-water dynamics,” Journal of the American Chemical Society, vol. 132, no. 35, pp. 12210–12211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. P. Graether, M. J. Kuiper, and S. M. Gagne, “Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect,” Nature, pp. 325–328, 2000.
  29. D. R. Nutt and J. C. Smith, “Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations,” Journal of the American Chemical Society, vol. 130, no. 39, pp. 13066–13073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Duan, C. Wu, S. Chowdhury et al., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations,” Journal of Computational Chemistry, vol. 24, no. 16, pp. 1999–2012, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. J. C. Berendsen, D. Spoel, and R. V. Drunen, “GROMACS: a message-passing parallel molecular dynamics implementation,” Computer Physics Communications, vol. 91, no. 1–3, pp. 43–56, 1995. View at Scopus
  33. X. Yu and D. M. Leitner, “Vibrational energy transfer and heat conduction in a protein,” Journal of Physical Chemistry B, vol. 107, no. 7, pp. 1698–1707, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Yu and D. M. Leitner, “Anomalous diffusion of vibrational energy in proteins,” Journal of Chemical Physics, vol. 119, no. 23, pp. 12673–12679, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Yu and D. M. Leitner, “Heat flow in proteins: computation of thermal transport coefficients,” Journal of Chemical Physics, vol. 122, no. 5, Article ID 054902, 11 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. M. Leitner, “Vibrational energy transfer and heat conduction in a one-dimensional glass,” Physical Review B, vol. 64, no. 9, Article ID 094201, 9 pages, 2001.
  37. B. Bagchi, “Water dynamics in the hydration layer around proteins and micelles,” Chemical Reviews, vol. 105, no. 9, pp. 3197–3219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Tarek and D. J. Tobias, “Role of protein-water hydrogen bond dynamics in the protein dynamical transition,” Physical Review Letters, vol. 88, no. 13, Article ID 138101, 4 pages, 2002.
  39. A. Luzar and D. Chandler, “Hydrogen-bond kinetics in liquid water,” Nature, vol. 379, no. 6560, pp. 55–57, 1996. View at Scopus
  40. M. Heyden and M. Havenith, “Combining THz spectroscopy and MD simulations to study protein-hydration coupling,” Methods, vol. 52, no. 1, pp. 74–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Bandyopadhyay, S. Chakraborty, and B. Bagchi, “Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer,” Journal of the American Chemical Society, vol. 127, no. 47, pp. 16660–16667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. G. E. Walrafen and Y. C. Chu, “Linearity between structural correlation length and correlated-proton Raman intensity from amorphous ice and supercooled water up to dense supercritical steam,” Journal of Physical Chemistry, vol. 99, no. 28, pp. 11225–11229, 1995. View at Scopus
  43. G. E. Walrafen, Y. C. Chu, and G. J. Piermarini, “Low-frequency Raman scattering from water at high pressures and high temperatures,” Journal of Physical Chemistry, vol. 100, no. 24, pp. 10363–10372, 1996. View at Scopus
  44. S. Chakraborty, S. K. Sinha, and S. Bandyopadhyay, “Low-frequency vibrational spectrum of water in the hydration layer of a protein: a molecular dynamics simulation study,” Journal of Physical Chemistry B, vol. 111, no. 48, pp. 13626–13631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Xu, R. Gnanasekaran, and D. M. Leitner, (to be published).
  46. N. Nandi and B. Bagchi, “Dielectric relaxation of biological water,” Journal of Physical Chemistry B, vol. 101, no. 50, pp. 10954–10961, 1997. View at Scopus
  47. S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, “Biological water: femtosecond dynamics of macromolecular hydration,” Journal of Physical Chemistry B, vol. 106, no. 48, pp. 12376–12395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Ebbinghaus, S. J. Kim, M. Heyden et al., “An extended dynamical hydration shell around proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20749–20752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Ebbinghaus, S. J. Kim, M. Heyden et al., “Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy,” Journal of the American Chemical Society, vol. 130, no. 8, pp. 2374–2375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. D. Friesen and D. V. Matyushov, “Non-Gaussian statistics of electrostatic fluctuations of hydration shells,” Journal of Chemical Physics, vol. 135, no. 10, Article ID 104501, 7 pages, 2011.
  51. B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discussions, vol. 141, pp. 161–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. U. Heugen, G. Schwaab, E. Bründermann et al., “Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12301–12306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D. M. Leitner, and M. Havenith, “Long-range influence of carbohydrates on the solvation dynamics of water—answers from terahertz absorption measurements and molecular modeling simulations,” Journal of the American Chemical Society, vol. 130, no. 17, pp. 5773–5779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Knab, J. Y. Chen, and A. G. Markelz, “Hydration dependence of conformational dielectric relaxation of lysozyme,” Biophysical Journal, vol. 90, no. 7, pp. 2576–2581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Q. Vinh, S. J. Allen, and K. W. Plaxco, “Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions,” Journal of the American Chemical Society, vol. 133, no. 23, pp. 8942–8947, 2011. View at Publisher · View at Google Scholar · View at Scopus