About this Journal Submit a Manuscript Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012 (2012), Article ID 125471, 17 pages
http://dx.doi.org/10.1155/2012/125471
Research Article

Temperature and H/D Isotopic Effects in the IR Spectra of the Hydrogen Bond in Solid-State 2-Furanacetic Acid and 2-Furanacrylic Acid

Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland

Received 1 March 2012; Revised 16 June 2012; Accepted 4 July 2012

Academic Editor: Joanna Sadlej

Copyright © 2012 Henryk T. Flakus and Anna Jarczyk-Jędryka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Pimentel and A. L. McClellan, The Hydrogen Bond, W. H. Freeman and Co, San Francisco, Calif, USA, 1960.
  2. P. Schuster, G. Zundel, and C. Sandorfy, The Hydrogen Bond, vol. 1–3, North-Holland, Amsterdam, The Netherlands, 1976.
  3. G. L. Hofacker, Y. Marechal, and M. A. Ratner, “The dynamical aspects of hydrogen bonds,” in In The Hydrogen Bond, Recent Developments in Theory and Experiment, W. P. Schuster, G. Zundel, and C. Sandorfy, Eds., vol. 1, p. 295, North-Holland, Amsterdam, The Netherlands, 1976.
  4. P. Schuster and W. Mikenda, Hydrogen Bond Research, Monatshefte fûr Chemie, Chemical Monthly, vol. 130, Springer, New York, NY, USA, 8th edition, 1999.
  5. D. Hadzi, Ed., Theoretical Treatments of Hydrogen Bonding, Wiley, New York, NY, USA, 1997.
  6. A. Witkowski, “Infrared spectra of the hydrogen-bonded carboxylic acids,” The Journal of Chemical Physics, vol. 47, no. 9, pp. 3679–3680, 1967.
  7. Y. Marechal and A. Witkowski, “Infrared spectra of H-bonded systems,” The Journal of Chemical Physics, vol. 48, no. 8, pp. 3697–3705, 1968. View at Scopus
  8. S. F. Fischer, G. L. Hofacker, and M. A. Ratner, “Spectral behavior of hydrogen-bonded systems: quasiparticle model,” The Journal of Chemical Physics, vol. 52, no. 4, pp. 1934–1947, 1970.
  9. O. Henri-Rousseau and P. Blaise, “The infrared spectral density of weak hydrogen bonds within the linear response theory,” Advances in Chemical Physics, vol. 103, pp. 1–137, 1998. View at Scopus
  10. O. Henri-Rousseau and P. Blaise, “The VXH line shapes of centrosymmetric cyclic dimers involving weak hydrogen bonds,” Advances in Chemical Physics, vol. 139, pp. 245–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Wójcik, “Theoretical interpretation of infrared spectra of the Cl–H stretching vibration in the gaseous (Ch3)2OHCl complex,” International Journal of Quantum Chemistry, vol. 29, no. 4, pp. 855–865, 1986. View at Publisher · View at Google Scholar
  12. J. L. Leviel and Y. Marechal, “Infrared spectra of H-bonded systems: anharmonicity of the H-bond vibrations in cyclic dimers,” The Journal of Chemical Physics, vol. 54, no. 3, pp. 1104–1107, 1971. View at Scopus
  13. J. Bournay and Y. Maréchal, “Dynamics of protons in hydrogen-bonded systems: propynoic and acrylic acid dimers,” The Journal of Chemical Physics, vol. 55, no. 3, pp. 1230–1235, 1971.
  14. P. Excoffon and Y. Marechal, “Infrared spectra of H-bonded systems: saturated carboxylic acid dimers,” Spectrochimica Acta A, vol. 28, no. 2, pp. 269–283, 1972. View at Scopus
  15. M. J. Wójcik, “Theory of the infrared spectra of the hydrogen bond in molecular crystals,” International Journal of Quantum Chemistry, vol. 10, no. 4, pp. 747–760, 1976. View at Publisher · View at Google Scholar
  16. H.T. Flakus and A. Bańczyk, “Abnormal distribution of protons and deuterons between the hydrogen bonds in cyclic centrosymmetric dimers in partially deuterated samples,” Journal of Molecular Structure, vol. 476, no. 1–3, pp. 57–68, 1999. View at Publisher · View at Google Scholar
  17. H. T. Flakus, “Vibronic model for H/D isotopic self-organization effects in centrosymmetric dimers of hydrogen bonds,” Journal of Molecular Structure, vol. 646, no. 1–3, pp. 15–23, 2003. View at Publisher · View at Google Scholar
  18. H. T. Flakus and A. Michta, “Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals,” Journal of Physical Chemistry A, vol. 114, no. 4, pp. 1688–1698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. W. G. Wyckoff, Crystal Structures, vol. 5, Wiley, New York, NY, USA, 1972.
  20. Z. Berkovitch-Yellin and L. Leiserowitz, “Atom-atom potential analysis of the packing characteristics of carboxylic acids. A study based on experimental electron density distributions,” Journal of the American Chemical Society, vol. 104, no. 15, pp. 4052–4064, 1982. View at Scopus
  21. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations; The Theory of Infrared and Raman Vibrational Spectra, McGraw- Hill, New York, NY, USA, 1955.
  22. H. T. Flakus and A. Miros, “Infrared spectra of the hydrogen bonded glutaric acid crystals: polarization and temperature effects,” Journal of Molecular Structure, vol. 484, no. 1–3, pp. 103–115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. H. T. Flakus and M. Chelmecki, “Infrared spectra of the hydrogen bond in benzoic acid crystals: temperature and polarization effects,” Spectrochimica Acta A, vol. 58, no. 1, pp. 179–196, 2002. View at Publisher · View at Google Scholar
  24. H. T. Flakus and M. Jabłońska, “Study of hydrogen bond polarized IR spectra of cinnamic acid crystals,” Journal of Molecular Structure, vol. 707, no. 1–3, pp. 97–108, 2004. View at Publisher · View at Google Scholar
  25. H. T. Flakus and M. Chełmecki, “Polarization IR spectra of the hydrogen bond in phenylacetic acid crystals: H/D isotopic effects-temperature and polarization effects,” Spectrochimica Acta Part A, vol. 58, no. 9, pp. 1867–1880, 2002. View at Publisher · View at Google Scholar
  26. H. T. Flakus and M. Chełmecki, “Polarization IR spectra of hydrogen bonded 1-naphthoic acid and 2-naphthoic acid crystals: electronic effects in the spectra,” Journal of Molecular Structure, vol. 659, no. 1–3, pp. 103–117, 2003. View at Publisher · View at Google Scholar
  27. H. T. Flakus and M. Chełmecki, “Polarization IR spectra of the hydrogen bond in 1-naphthylacetic and 2-naphthylacetic acid crystals: H/D isotopic effects. Temperature and polarization effects,” Journal of Molecular Structure, vol. 705, no. 1–3, pp. 81–89, 2004. View at Publisher · View at Google Scholar
  28. S. E. Filippakis and G. M. J. Schmidt, “Topochemistry. Part XVI. The crystal structure of trans-β-2-furylacrylic acid,” Journal of the Chemical Society B, pp. 229–232, 1967. View at Publisher · View at Google Scholar
  29. M. Danish, S. Ali, M. Mazhar, A. Badshah, and E. R. T. Tieking, “Crystal structure of 3-(2-Furyl)acrylic Acid, C7H6O3,” Zeitschrift für Kristallographie, vol. 210, no. 9, p. 703, 1995. View at Publisher · View at Google Scholar
  30. H. T. Flakus and A. Tyl, “Polarized IR spectra of the hydrogen bond in acetic acid crystals,” Chemical Physics, vol. 336, no. 1, pp. 36–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. T. Flakus and B. Stachowska, “A systematic study of polarized IR spectra of the hydrogen bond in formic acid crystals,” Chemical Physics, vol. 330, no. 1-2, pp. 231–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Tyl, E. Chełmecka, M. Jabłońska et al., “X-ray analysis at 150 K, synthesis and theoretical calculations of 1-naphthaleneacrylic acid,” Structural Chemistry, vol. 23, no. 2, pp. 325–323, 2012. View at Publisher · View at Google Scholar
  33. H. T. Flakus, M. Jabłońska, and P.G. Jones, “Study of polarized IR spectra of the hydrogen bond system in crystals of styrylacetic acid,” Spectrochimica Acta A, vol. 65, no. 2, pp. 481–489, 2006. View at Publisher · View at Google Scholar
  34. G. Fisher, Vibronic Coupling, Acadamic Press, London, UK, 1984.
  35. H. T. Flakus, “On the vibrational transition selection rules for the centrosymmetric hydrogen-bonded dimeric systems,” Journal of Molecular Structure C, vol. 187, pp. 35–53, 1989. View at Scopus
  36. H. T. Flakus, A. Pyzik, A. Michta, and J. Kusz, “‘Reversal’ exciton coupling effect in the IR spectra of the hydrogen bond cyclic dimers; polarized IR spectra of 3-hydroxy-4-methyl-2(3H)-thiazolethione crystals,” Vibrational Spectroscopy, vol. 44, no. 1, pp. 108–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. T. Flakus and A. Tyl, “Strong vibrational exciton coupling effects in polarized IR spectra of the hydrogen bond in 2-thiopyridone crystals,” Vibrational Spectroscopy, vol. 47, no. 2, pp. 129–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. H. T. Flakus, A. Tyl, and A. Maślankiewicz, “Electron-induced phase transition in hydrogen-bonded solid-state 2-pyridone,” Journal of Physical Chemistry A, vol. 115, no. 6, pp. 1027–1039, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. H. T. Flakus, A. Miros, and P. G. Jones, “Influence of molecular electronic properties on the IR spectra of dimeric hydrogen bond systems: polarized spectra of 2-hydroxybenzothiazole and 2-mercaptobenzothiazole crystals,” Journal of Molecular Structure, vol. 604, no. 1, pp. 29–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. H. T. Flakus and A. Machelska, “Polarization IR spectra of hydrogen bonded pyrazole crystals: self-organization effects in proton and deuteron mixture systems. Long-range H/D isotopic effects,” Spectrochimica Acta Part A, vol. 58, no. 314, pp. 553–566, 2002. View at Publisher · View at Google Scholar
  41. H. T. Flakus, A. Tyl, and P. G. Jones, “‘Self-organization’ processes in proton and deuteron mixtures in open-chain hydrogen bond systems: Polarization IR spectra of 4-mercaptopyridine crystals,” Spectrochimica Acta A, vol. 58, no. 2, pp. 299–310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. H. T. Flakus, W. Śmiszek-Lindert, and K. Stadnicka, “Strong vibronic coupling effects in polarized IR spectra of the hydrogen bond in N-methylthioacetamide crystals,” Chemical Physics, vol. 335, no. 2-3, pp. 221–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. A. Davydov, Teorya Molekularnykh Ekscitonov, Nauka, Moscow, Russia, 1968.
  44. R. L. Hochstrasser, Molecular Aspects of Symmetry, W. A. Benjamin Inc., New York, NY, USA, 1966.
  45. L. A. Nafie, “Adiabatic molecular properties beyond the Born-Oppenheimer approximation. Complete adiabatic wave functions and vibrationally induced electronic current density,” The Journal of Chemical Physics, vol. 79, no. 10, pp. 4950–4957, 1983. View at Scopus
  46. H.T. Flakus, “The effect of strong coupling between vibrations in hydrogen bonds on the polarized spectra of the mercaptobenzothiazole crystal: an “anomalous” isotopic effect,” Chemical Physics, vol. 62, no. 1-2, pp. 103–114, 1981.
  47. P. Blaise, M. J. Wojcik, and O. Henri-Rousseau, “Theoretical Interpretation of the Lineshape of the Gaseous Acetic Acid Dimer.,” Journal of Chemical Physics, vol. 122, Article ID 064306, 2005.
  48. N. Rekik, H. Ghalla, H. T. Flakus, M. Jablońska, P. Blaise, and B. Oujia, “Polarized infrared spectra of the H(D) bond in 2-thiophenic acid crystals: a spectroscopic and computational study,” ChemPhysChem, vol. 10, no. 17, pp. 3021–3033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Najeh, G. Houcine, H. T. Flakus, M. Jablonska, and O. Brahim, “Experimental and theoretical study of the polarized infrared spectra of the hydrogen bond in 3-thiophenic acid crystal,” Journal of Computational Chemistry, vol. 31, no. 3, pp. 463–475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. H. T. Flakus, N. Rekik, and A. Jarczyk, “Polarized IR spectra of the hydrogen bond in 2-thiopheneacetic acid and 2-thiopheneacrylic acid crystals: H/D isotopic and temperature effects,” The Journal of Physical Chemistry A, vol. 116, no. 9, pp. 2117–2130, 2012. View at Publisher · View at Google Scholar
  51. L. J. Bellamy and P. E. Rogasch, “Proton transfer in hydrogen bonded systems,” Proceedings of the Royal Society A, vol. 257, pp. 98–108, 1960. View at Publisher · View at Google Scholar
  52. H. T. Flakus, A. Michta, M. Nowak, and J. Kusz, “Effects of dynamical couplings in IR spectra of the hydrogen bond in N-phenylacrylamide crystals,” Journal of Physical Chemistry A, vol. 115, no. 17, pp. 4202–4213, 2011. View at Publisher · View at Google Scholar · View at Scopus