About this Journal Submit a Manuscript Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012 (2012), Article ID 192613, 9 pages
http://dx.doi.org/10.1155/2012/192613
Research Article

The Effect of Nonnative Interactions on the Energy Landscapes of Frustrated Model Proteins

1School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
2University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK

Received 15 November 2011; Accepted 27 January 2012

Academic Editor: Jan Petter Hansen

Copyright © 2012 Mark T. Oakley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science, vol. 181, no. 4096, pp. 223–230, 1973. View at Scopus
  2. J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, “Funnels, pathways, and the energy landscape of protein folding: a synthesis,” Proteins, vol. 21, no. 3, pp. 167–195, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Ueda, H. Taketomi, and N. Gō, “Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A three-dimensional lattice model of lysozyme,” Biopolymers, vol. 17, no. 6, pp. 1531–1548, 1978. View at Scopus
  4. C. Micheletti, F. Seno, and A. Maritan, “Polymer principles of protein calorimetric two-state cooperativity,” Proteins, vol. 40, no. 4, pp. 637–661, 2000.
  5. C. Clementi, H. Nymeyer, and J. N. Onuchic, “Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins,” Journal of Molecular Biology, vol. 298, no. 5, pp. 937–953, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. H. Schymkowitz, F. Rousseau, and L. Serrano, “Surfing on protein folding energy landscapes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 15846–15848, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Das, C. J. Wilson, G. Fossati, P. Wittung-Stafshede, K. S. Matthews, and C. Clementi, “Characterization of the folding landscape of monomeric lactose repressor: quantitative comparison of theory and experiment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14569–14574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Lam, J. M. Borreguero, F. Ding et al., “Parallel folding pathways in the SH3 domain protein,” Journal of Molecular Biology, vol. 373, no. 5, pp. 1348–1360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. F. N. Faísca, R. D. M. Travasso, R. C. Ball, and E. I. Shakhnovich, “Identifying critical residues in protein folding: insights from ϕ-value and Pfold analysis,” Journal of Chemical Physics, vol. 129, no. 9, Article ID 095108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. D. Hills and C. L. Brooks, “Insights from coarse-grained go models for protein folding and dynamics,” International Journal of Molecular Sciences, vol. 10, no. 3, pp. 889–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. P. O. Craig, J. Lätzer, P. Weinkam, et al., “Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes,” American Chemical Society, vol. 133, no. 43, pp. 17463–17472, 2011. View at Publisher · View at Google Scholar
  12. M. A. Miller and D. J. Wales, “Energy landscape of a model protein,” Journal of Chemical Physics, vol. 111, no. 14, pp. 6610–6616, 1999.
  13. L. Sutto, J. Lätzer, J. A. Hegler, D. U. Ferreiro, and P. G. Wolynes, “Consequences of localized frustration for the folding mechanism of the IM7 protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 50, pp. 19825–19830, 2007. View at Publisher · View at Google Scholar
  14. K. F. Lau and K. A. Dill, “A lattice statistical mechanics model of the conformational and sequence spaces of proteins,” Macromolecules, vol. 22, no. 10, pp. 3986–3997, 1989. View at Scopus
  15. K. A. Dill, S. Bromberg, K. Yue et al., “Principles of protein folding—a perspective from simple exact models,” Protein Science, vol. 4, no. 4, pp. 561–602, 1995. View at Scopus
  16. J. D. Honeycutt and D. Thirumalai, “Metastability of the folded states of globular proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 9, pp. 3526–3529, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Honeycutt and D. Thirumalai, “The nature of folded states of globular proteins,” Biopolymers, vol. 32, no. 6, pp. 695–709, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Guo and D. Thirumalai, “Nucleation mechanism for protein folding and theoretical predictions for hydrogen-exchange labeling experiments,” Biopolymers, vol. 35, no. 1, pp. 137–140, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Guo and D. Thirumalai, “Kinetics and thermodynamics of folding of a de novo designed four-helix bundle protein,” Journal of Molecular Biology, vol. 263, no. 2, pp. 323–343, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Guo and C. L. Brooks III, “Thermodynamics of protein folding: a statistical mechanical study of a small all-β protein,” Biopolymers, vol. 42, no. 7, pp. 745–757, 1997. View at Scopus
  21. R. S. Berry, N. Elmaci, J. P. Rose, and B. Vekhter, “Linking topography of its potential surface with the dynamics of folding of a protein model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9520–9524, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Nymeyer, A. E. García, and J. N. Onuchic, “Folding funnels and frustration in off-lattice minimalist protein landscapes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 5921–5928, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. E. Shea, Y. D. Nochomovitz, Z. Guo, and C. L. Brooks, “Exploring the space of protein folding Hamiltonians: the balance of forces in a minimalist β-barrel model,” Journal of Chemical Physics, vol. 109, no. 7, pp. 2895–2903, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Elmaci and R. S. Berry, “Principal coordinate analysis on a protein model,” Journal of Chemical Physics, vol. 110, no. 21, pp. 10606–10622, 1999. View at Scopus
  25. J. E. Shea, J. N. Onuchic, and C. L. Brooks, “Energetic frustration and the nature of the transition state in protein folding,” Journal of Chemical Physics, vol. 113, no. 17, pp. 7663–7671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. D. A. Evans and D. J. Wales, “Free energy landscapes of model peptides and proteins,” Journal of Chemical Physics, vol. 118, no. 8, pp. 3891–3897, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Stoycheva, J. N. Onuchic, and C. L. Brooks, “Effect of gatekeepers on the early folding kinetics of a model β-barrel protein,” Journal of Chemical Physics, vol. 119, no. 11, pp. 5722–5729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Wales and P. E. J. Dewsbury, “Effect of salt bridges on the energy landscape of a model protein,” Journal of Chemical Physics, vol. 121, no. 20, pp. 10284–10290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Komatsuzaki, K. Hoshino, Y. Matsunaga, G. J. Rylance, R. L. Johnston, and D. J. Wales, “How many dimensions are required to approximate the potential energy landscape of a model protein?” Journal of Chemical Physics, vol. 122, no. 8, Article ID 084714, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Rylance, R. L. Johnston, Y. Matsunaga, C.-B. Li, A. Baba, and T. Komatsuzaki, “Topographical complexity of multidimensional energy landscapes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 49, pp. 18551–18555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Kim and T. Keyes, “Inherent structure analysis of protein folding,” Journal of Physical Chemistry B, vol. 111, no. 10, pp. 2647–2657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Kim and T. Keyes, “Influence of go-like interactions on global shapes of energy landscapes inβ-barrel forming model proteins: inherent structure analysis and statistical temperature molecular dynamics simulation,” Journal of Physical Chemistry B, vol. 112, no. 3, pp. 954–966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Kim, T. Keyes, and J. E. Straub, “Relationship between protein folding thermodynamics and the energy landscape,” Physical Review E, vol. 79, no. 3, Article ID 030902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. A. Larrass, L. M. Pegram, H. L. Gordon, and S. M. Rothstein, “Efficient generation of low-energy folded states of a model protein. II. Automated histogram filtering,” Journal of Chemical Physics, vol. 119, no. 24, pp. 13149–13158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. W. Pan, H. L. Gordon, and S. M. Rothstein, “Local-structural diversity and protein folding: application to all-beta off-lattice protein models,” The Journal of Chemical Physics, vol. 124, no. 2, p. 024905, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Kim, J. E. Straub, and T. Keyes, “Statistical temperature molecular dynamics: application to coarse-grained β-barrel-forming protein models,” Journal of Chemical Physics, vol. 126, no. 13, Article ID 135101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S.-Y. Kim, “An off-lattice frustrated model protein with a six-stranded β-barrel structure,” Journal of Chemical Physics, vol. 133, no. 13, Article ID 135102, 2010. View at Publisher · View at Google Scholar
  38. M. T. Oakley, D. J. Wales, and R. L. Johnston, “Energy landscape and global optimization for a frustrated model protein,” Journal of Physical Chemistry B, vol. 115, no. 39, pp. 11525–11529, 2011. View at Publisher · View at Google Scholar
  39. O. M. Becker and M. Karplus, “The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics,” Journal of Chemical Physics, vol. 106, no. 4, pp. 1495–1517, 1997. View at Scopus
  40. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. P. G. Mezey, Potential Energy Hypersurfaces, Elsevier, Amsterdam, The Netherlands, 1987.
  42. Z. Li and H. A. Scheraga, “Monte Carlo-minimization approach to the multiple-minima problem in protein folding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 19, pp. 6611–6615, 1987. View at Scopus
  43. D. J. Wales and H. A. Scheraga, “Global optimization of clusters, crystals, and biomolecules,” Science, vol. 285, no. 5432, pp. 1368–1372, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms,” Journal of Physical Chemistry A, vol. 101, no. 28, pp. 5111–5116, 1997. View at Scopus
  45. R. L. Johnston, “Evolving better nanoparticles: genetic algorithms for optimising cluster geometries,” Dalton Transactions, no. 22, pp. 4193–4207, 2003. View at Scopus
  46. D. J. Wales, “GMIN: A program for finding global minima and calculating thermodynamic properties from basin-sampling,” http://www-wales.ch.cam.ac.uk/GMIN/.
  47. P. G. Mezey, “Catchment region partitioning of energy hypersurfaces, I,” Theoretica Chimica Acta, vol. 58, no. 4, pp. 309–330, 1981. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Wales, “PATHSAMPLE: A program for refining and analysing kinetic transition networks,” http://www-wales.ch.cam.ac.uk/OPTIM/.
  49. D. J. Wales, “OPTIM: A program for characterising stationary points and reaction pathways,” http://www-wales.ch.cam.ac.uk/PATHSAMPLE/.
  50. D. J. Wales, “Locating stationary points for clusters in cartesian coordinates,” Journal of the Chemical Society, Faraday Transactions, vol. 89, no. 9, pp. 1305–1313, 1993. View at Publisher · View at Google Scholar · View at Scopus
  51. L. J. Munro and D. J. Wales, “Defect migration in crystalline silicon,” Physical Review B, vol. 59, no. 6, pp. 3969–3980, 1999. View at Scopus
  52. G. Henkelman and H. Jónsson, “A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives,” Journal of Chemical Physics, vol. 111, no. 15, pp. 7010–7022, 1999. View at Scopus
  53. Y. Kumeda, L. J. Munro, and D. J. Wales, “Transition states and rearrangement mechanisms from hybrid eigenvector-following and density functional theory: application to C10H10 and defect migration in crystalline silicon,” Chemical Physics Letters, vol. 341, no. 1-2, pp. 185–194, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. J. M. Carr, S. A. Trygubenko, and D. J. Wales, “Finding pathways between distant local minima,” Journal of Chemical Physics, vol. 122, no. 23, Article ID 234903, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959. View at Publisher · View at Google Scholar · View at Scopus
  56. D. J. Wales, “Discrete path sampling,” Molecular Physics, vol. 100, no. 20, pp. 3285–3305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. D. J. Wales, “Energy landscapes: calculating pathways and rates,” International Reviews in Physical Chemistry, vol. 25, no. 1-2, pp. 237–282, 2006. View at Publisher · View at Google Scholar
  58. J. D. Bryngelson and P. G. Wolynes, “Spin glasses and the statistical mechanics of protein folding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 21, pp. 7524–7528, 1987. View at Scopus
  59. J. N. Onuchic, P. G. Wolynes, Z. Luthey-Schulten, and N. D. Socci, “Toward an outline of the topography of a realistic protein-folding funnel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 8, pp. 3626–3630, 1995. View at Scopus
  60. M. Karplus and A. Sali, “Theoretical studies of protein folding and unfolding,” Current Opinion in Structural Biology, vol. 5, no. 1, pp. 58–73, 1995.
  61. J. N. Onuchic, H. Nymeyer, A. E. García, J. Chahine, and N. D. Socci, “The energy landscape theory of protein folding: insights into folding mechanisms and scenarios,” Advances in Protein Chemistry, vol. 53, pp. 87–152, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Clementi and S. S. Plotkin, “The effects of nonnative interactions on protein folding rates: theory and simulation,” Protein Science, vol. 13, no. 7, pp. 1750–1766, 2004. View at Publisher · View at Google Scholar · View at Scopus