About this Journal Submit a Manuscript Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012 (2012), Article ID 236793, 11 pages
http://dx.doi.org/10.1155/2012/236793
Research Article

Polymorphism, Hydrogen Bond Properties, and Vibrational Structure of 1H-Pyrrolo[3,2-h]Quinoline Dimers

1Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
2Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA

Received 29 February 2012; Accepted 30 May 2012

Academic Editor: Paul Blaise

Copyright © 2012 Alexandr Gorski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Waluk, “Hydrogen-bonding-induced phenomena in bifunctional heteroazaaromatics,” Accounts of Chemical Research, vol. 36, no. 11, pp. 832–838, 2003. View at Publisher · View at Google Scholar
  2. J. A. Walmsley, “Self-association of 7-azaindole in nonpolar solvents,” The Journal of Physical Chemistry, vol. 85, no. 21, pp. 3181–3187, 1981.
  3. P. Dufour, Y. Dartiguenave, M. Dartiguenave et al., “Crystal structures of 7-azaindole, an unusual hydrogen-bonded tetramer, and of two of its methylmercury(II)complexes,” Canadian Journal of Chemistry, vol. 68, no. 1, pp. 193–201, 1990.
  4. H. Yokoyama, H. Watanabe, T. Omi, S. I. Ishiuchi, and M. Fujii, “Structure of hydrogen-bonded clusters of 7-azaindole studied by IR dip spectroscopy and ab initio molecular orbital calculation,” Journal of Physical Chemistry A, vol. 105, no. 41, pp. 9366–9374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Sakota, Y. Kageura, and H. Sekiya, “Cooperativity of hydrogen-bonded networks in 7-azaindole(CH3OH)n (n=2,3)clusters evidenced by IR-UV ion-dip spectroscopy and natural bond orbital analysis,” Journal of Chemical Physics, vol. 129, no. 5, Article ID 054303, 2008. View at Publisher · View at Google Scholar
  6. K. Sakota, Y. Komure, W. Ishikawa, and H. Sekiya, “Spectroscopic study on the structural isomers of 7-azaindole(ethanol)n (n=13) and multiple-proton transfer reactions in the gas phase,” Journal of Chemical Physics, vol. 130, no. 22, Article ID 224307, 2009. View at Publisher · View at Google Scholar
  7. T. B. C. Vu, I. Kalkman, W. L. Meerts, Y. N. Svartsov, C. Jacoby, and M. Schmitt, “Rotationally resolved electronic spectroscopy of water clusters of 7-azaindole,” Journal of Chemical Physics, vol. 128, no. 21, Article ID 214311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Pino, I. Alata, C. Dedonder, C. Jouvet, K. Sakota, and H. Sekiya, “Photon induced isomerization in the first excited state of the 7-azaindole-(H2O)3 cluster,” Physical Chemistry Chemical Physics, vol. 13, no. 13, pp. 6325–6331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Sakota, C. Jouvet, C. Dedonder, M. Fujii, and H. Sekiya, “Excited-state triple-proton transfer in 7-azaindole(H2O)2 and reaction path studied by electronic spectroscopy in the gas phase and quantum chemical calculations,” Journal of Physical Chemistry A, vol. 114, no. 42, pp. 11161–11166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Suwińska, “Crystal structure communications,” Acta Crystallographica C, vol. 41, pp. 973–975, 1985. View at Publisher · View at Google Scholar
  11. J. Waluk and B. Pakuła, “Viscosity and temperature effects in excited state double proton transfer: iuminescence of 1-azacarbazole dimers in solid state and solution,” Journal of Molecular Structure, vol. 114, pp. 359–362, 1984.
  12. J. Waluk, A. Grabowska, B. Pakuła, and J. Sepioł, “Viscosity vs. temperature effects in excited-state double proton transfer. Comparison of 1-azacarbazole with 7-azaindole,” The Journal of Physical Chemistry, vol. 88, no. 6, pp. 1160–1162, 1984. View at Publisher · View at Google Scholar
  13. J. Waluk, J. Herbich, D. Oelkrug, and S. Uhl, “Excited-state double proton transfer in the solid state: the dimers of 1-azacarbazole,” Journal of Physical Chemistry, vol. 90, no. 17, pp. 3866–3868, 1986. View at Scopus
  14. J. Catalán, “Photophysics of 1-azacarbazole dimers: a reappraisal,” The Journal of Physical Chemistry A, vol. 111, no. 36, pp. 8774–8779, 2007.
  15. D. Marks, H. Zhang, P. Borowicz, J. Waluk, and M. Glasbeek, “(Sub)picosecond fluorescence upconversion studies of intermolecular proton transfer of dipyrido[2,3-a:3′,2′-i]carbazole and related compounds,” Journal of Physical Chemistry A, vol. 104, no. 31, pp. 7167–7175, 2000. View at Scopus
  16. A. Kyrychenko, J. Herbich, M. Izydorzak, F. Wu, R. P. Thummel, and J. Waluk, “Role of ground state structure in photoinduced tautomerization in bifunctional proton donor-acceptor molecules: 1H-pyrrolo[3,2-h]quinoline and related compounds,” Journal of the American Chemical Society, vol. 121, no. 48, pp. 11179–11188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kyrychenko and J. Waluk, “Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study,” The Journal of Physical Chemistry A, vol. 110, no. 43, pp. 11958–11967, 2006.
  18. Y. Nosenko, M. Kunitski, R. P. Thummel et al., “Detection and structural characterization of clusters with ultrashort-lived electronically excited states: IR absorption detected by femtosecond multiphoton ionization,” Journal of the American Chemical Society, vol. 128, no. 31, pp. 10000–10001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Nosenko, A. Kyrychenko, R. P. Thummel, J. Waluk, B. Brutschy, and J. Herbich, “Fluorescence quenching in cyclic hydrogen-bonded complexes of 1H-pyrrolo[3,2-h]quinoline with methanol: cluster size effect,” Physical Chemistry Chemical Physics, vol. 9, no. 25, pp. 3276–3285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Nosenko, M. Kunitski, C. Riehn et al., “Separation of different hydrogen-bonded clusters by femtosecond UV-ionization-detected infrared spectroscopy: 1H-pyrrolo[3,2-h] quinoline·(H2O)n=1,2 complexes,” Journal of Physical Chemistry A, vol. 112, no. 6, pp. 1150–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Herbich, J. Sepioł, and J. Waluk, “Determination of the energy barrier origin of the excited state double proton transfer in 7-azaindole: alcohol complexes,” Journal of Molecular Structure, vol. 114, pp. 329–332, 1984.
  22. D. McMorrow and T. J. Aartsma, “Solvent-mediated proton transfer. The roles of solvent structure and dynamics on the excited-state tautomerization of 7-azaindole/alcohol complexes,” Chemical Physics Letters, vol. 125, no. 5-6, pp. 581–585, 1986.
  23. J. Konijnenberg, A. H. Huizer, and C. A. G. O. Varma, “Solute-solvent interaction in the photoinduced tautomerization of 7-azaindole in various alcohols and in mixtures of cyclohexane and ethanol,” Journal of the Chemical Society, Faraday Transactions 2, vol. 84, no. 8, pp. 1163–1175, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Moog, S. C. Bovino, and J. D. Simon, “Solvent relaxation and excited-state proton transfer: 7-azaindole in ethanol,” Journal of Physical Chemistry, vol. 92, no. 23, pp. 6545–6547, 1988. View at Scopus
  25. R. S. Moog and M. Maroncelli, “7-Azaindole in alcohols: solvation dynamics and proton transfer,” Journal of Physical Chemistry, vol. 95, no. 25, pp. 10359–10369, 1991. View at Scopus
  26. A. V. Smirnov, D. S. English, R. L. Rich et al., “Photophysics and biological applications of 7-azaindole and its analogs,” Journal of Physical Chemistry B, vol. 101, no. 15, pp. 2758–2769, 1997. View at Scopus
  27. S. Mente and M. Maroncelli, “Solvation and the excited-state tautomerization of 7-azaindole and 1-azacarbazole: computer simulations in water and alcohol solvents,” Journal of Physical Chemistry A, vol. 102, no. 22, pp. 3860–3876, 1998. View at Scopus
  28. K. C. Ingham, M. Abu-Elgheit, and M. Ashraf El-Bayoumi, “Confirmation of biprotonic phototautomerism in 7-azaindole hydrogen-bonded dimers,” Journal of the American Chemical Society, vol. 93, no. 20, pp. 5023–5025, 1971. View at Scopus
  29. S. N. Krasnokutskii, L. N. Kurkovskaya, T. A. Shibanova, and V. P. Shabunova, “Structure of 1H-pyrrolo[3,2-h]quinoline,” Zhurnal Strukturnoi Khimii, vol. 32, p. 131, 1991.
  30. J. Herbich, M. Kijak, R. Luboradzki et al., “In search for phototautomerization in solid dipyrido[2,3-a:3,2-i]carbazole,” Journal of Photochemistry and Photobiology A, vol. 154, no. 1, pp. 61–68, 2002.
  31. F. Wu, C. M. Chamchoumis, and R. P. Thummel, “Bidentate ligands that contain pyrrole in place of pyridine,” Inorganic Chemistry, vol. 39, no. 3, pp. 584–590, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Takemura, S. Minomura, O. Shimomura, and Y. Fujii, “Observation of molecular dissociation of iodine at high pressure by X-ray diffraction,” Physical Review Letters, vol. 45, no. 23, pp. 1881–1884, 1980. View at Publisher · View at Google Scholar · View at Scopus
  33. H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steiberg, “Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar,” Journal of Applied Physics, vol. 49, no. 6, pp. 3276–3283, 1978. View at Publisher · View at Google Scholar
  34. G. M. Sheldrick, “Foundations of crystallography,” Acta Crystallographica A, vol. 64, pp. 112–122, 2008. View at Publisher · View at Google Scholar
  35. M. D. Segall, P. J. D. Lindan, M. J. Probert et al., “First-principles simulation: ideas, illustrations and the CASTEP code,” Journal of Physics Condensed Matter, vol. 14, no. 11, pp. 2717–2744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. J. P. Perdew, J. A. Chevary, S. H. Vosko et al., “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, vol. 46, no. 11, pp. 6671–6687, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, no. 11, pp. 7892–7895, 1990.
  38. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976. View at Publisher · View at Google Scholar · View at Scopus
  39. J. P. Merrick, D. Moran, and L. Radom, “An evaluation of harmonic vibrational frequency scale factors,” Journal of Physical Chemistry A, vol. 111, no. 45, pp. 11683–11700, 2007. View at Publisher · View at Google Scholar · View at Scopus