About this Journal Submit a Manuscript Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012 (2012), Article ID 361947, 16 pages
http://dx.doi.org/10.1155/2012/361947
Research Article

Relativistic Time-Dependent Density Functional Theory and Excited States Calculations for the Zinc Dimer

Laboratoire de Chimie Quantique, Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France

Received 20 February 2012; Revised 7 May 2012; Accepted 9 May 2012

Academic Editor: Jan Petter Hansen

Copyright © 2012 Ossama Kullie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. G. Caulton and L. G. Hubert-Pfalzgraf, “Synthesis, structural principles, and reactivity of heterometallic alkoxides,” Chemical Reviews, vol. 90, no. 6, pp. 969–995, 1990. View at Scopus
  2. M. C. Heitz, K. Finger, and C. Daniel, “Photochemistry of organometallics: quantum chemistry and photodissociation dynamics,” Coordination Chemistry Reviews, vol. 159, pp. 171–193, 1997. View at Publisher · View at Google Scholar
  3. L. Huebner, A. Kornienko, T. J. Emge, and J. G. Brennan, “Heterometallic lanthanide group 12 metal iodides,” Inorganic Chemistry, vol. 43, no. 18, pp. 5659–5664, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Kobayashia and R. D. Amos, “The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin complex,” Chemical Physics Letters, vol. 420, no. 1–3, pp. 106–109, 2006. View at Publisher · View at Google Scholar
  5. G. Hua, Y. Zhang, J. Zhang, X. Cao, W. Xu, and L. Zhang, “Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells,” Materials Letters, vol. 62, no. 25, pp. 4109–4111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Lee, Y. W. Chun, M. H. Hon, and I. C. Leu, “Density-controlled growth and field emission property of aligned ZnO nanorod arrays,” Applied Physics A, vol. 97, no. 2, pp. 403–4408, 2009. View at Publisher · View at Google Scholar
  7. T. Yamase, H. Gerischer, M. Lübke, and B. Pettinger, “Spectral sensitization of ZnO-electrodes by methylene blue,” Berichte der Bunsengesellschaft für physikalische Chemie, vol. 83, no. 7, pp. 658–6663, 1979. View at Publisher · View at Google Scholar
  8. D. K. Roe, L. Wenzhao, and H. Gerischer, “Electrochemical deposition of cadmium sulfide from DMSO solution,” Journal of Electroanalytical Chemistry, vol. 136, no. 2, pp. 323–337, 1982. View at Scopus
  9. M. D. Morse, “Clusters of transition-metal atoms,” Chemical Reviews, vol. 86, no. 6, pp. 1049–11109, 1986. View at Publisher · View at Google Scholar
  10. J. Koperski, “Study of diatomic van der Waals complexes in supersonic beams,” Physics Reports, vol. 369, no. 3, pp. 177–1326, 2002. View at Publisher · View at Google Scholar
  11. J. Koperski, “Group-12 vdW dimers in free-jet supersonic beams: the legacy of Eugeniusz Czuchaj continues,” Europhysics Letters, vol. 144, pp. 107–114, 2007. View at Publisher · View at Google Scholar
  12. M. Yu and M. Dolg, “Covalent contributions to bonding in group 12 dimers M2 (Mn = Zn, Cd, Hg),” Chemical Physics Letters, vol. 273, no. 5-6, pp. 329–3336, 1997. View at Publisher · View at Google Scholar
  13. L. Bucinisky, S. Biskupic, M. Ilcin, V. Lukeš, and V. Lauring, “On relativistic effects in ground state potential curves of Zn2, Cd2, and Hg2 dimers. A CCSD(T) study,” Journal of Computational Chemistry, vol. 30, no. 1, pp. 65–674, 2009. View at Publisher · View at Google Scholar
  14. R. Eichler, N. V. Aksenov, A. V. Belozerov et al., “Chemical characterization of element 112,” Nature, vol. 447, no. 7140, pp. 72–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Gaston, I. Opahle, H. W. Góggeler, and P. Schwerdtfeger, “Is Eka-Mercury (element 112) a group 12 metal ?” Angewandte Chemie International Edition, vol. 46, pp. 1663–11666, 2007.
  16. V. Pershina, J. Anton, and T. Jacob, “Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb,” Journal of Chemical Physics, vol. 131, no. 8, Article ID 084713, 8 pages, 2009. View at Publisher · View at Google Scholar
  17. K. Ellingsen, T. Saue, C. Puchan, and O. Groupen, “An Ab initio study of the electronic spectrum of Zn2 including spin-orbit coupling,” Chemical Physics, vol. 311, no. 1-2, pp. 35–344, 2005. View at Publisher · View at Google Scholar
  18. E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, “Adiabatic potential curves for the Cd2 dimer,” Chemical Physics Letters, vol. 225, no. 1–3, pp. 233–239, 1994. View at Scopus
  19. E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, “Potential energy curves for the Zn2 dimer,” Chemical Physics Letters, vol. 255, no. 1–3, pp. 203–209, 1996. View at Scopus
  20. E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, “Calculation of ground- and excited-state potential energy curves for the Hg2 molecule in a pseudopotential approach,” Chemical Physics, vol. 214, no. 2-3, pp. 277–289, 1997. View at Scopus
  21. T. Saue, L. Visscher, H. J. Aa. Jensen, et al., DIRAC, a relativistic Ab initio electronic structure program, Release DIRAC10, 2010, http://dirac.chem.vu.nl/.
  22. N. C. Pyper, I. Grant, and R. Gerber, “Relativistic effects on interactions between heavy atoms: the Hg_Hg potential,” Chemical Physics Letters, vol. 49-, pp. 479–483, 1977. View at Publisher · View at Google Scholar
  23. M. Seth, P. Schwerdtfeger, and M. Dolg, “The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4,” Journal of Chemical Physics, vol. 106, no. 9, pp. 3623–3632, 1997. View at Scopus
  24. J. Antona, B. Fricke, and P. Schwerdtfeger, “Non-collinear and collinear four-component relativistic molecular density functional calculations,” Chemical Physics, vol. 311, no. 1-2, pp. 97–103, 2005.
  25. L. Belpassi, L. Storchi, H. M. Quineyb, and F. Tarantelli, “Recent advances and perspectives in four-component Dirac-Kohn-Sham calculations,” Physical Chemistry Chemical Physics, vol. 13, pp. 12368–12394, 2011.
  26. R. Bast, A. Heßelmann, P. Sałek, T. Helgaker, and T. Saue, “Static and frequency-dependent dipole-dipole polarizabilities of all closed-shell atoms up to radium: a four-component relativistic DFT study,” ChemPhysChem, vol. 9, no. 3, pp. 445–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Bast, H. J. A. A. Jensen, and T. Saue, “Relativistic adiabatic time-dependent density functional theory using hybrid functionals and noncollinear spin magnetization,” International Journal of Quantum Chemistry, vol. 109, no. 10, pp. 2091–2112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Saue and H. J. A. Jensen, “Linear response at the 4-component relativistic level: application to the frequency-dependent dipole polarizabilities of the coinage metal dimers,” Journal of Chemical Physics, vol. 118, no. 2, pp. 533–515, 2003.
  29. J. C. Slater, “A simplification of the Hartree-Fock method,” Physical Review, vol. 81, no. 3, pp. 385–390, 1951. View at Publisher · View at Google Scholar
  30. S. J. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis,” Canadian Journal of Physics, vol. 58, no. 8, pp. 1200–11211, 1980. View at Publisher · View at Google Scholar
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Scopus
  32. A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. View at Publisher · View at Google Scholar
  33. J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Physical Review B, vol. 33, no. 12, pp. 8822–8824, 1986. View at Publisher · View at Google Scholar · View at Scopus
  34. J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Physical Review B, vol. 34, no. 10, article 7406, 1986. View at Publisher · View at Google Scholar · View at Scopus
  35. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, vol. 45, no. 23, pp. 13244–13249, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Ernzerhof and G. E. Scuseria, “Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional,” Journal of Chemical Physics, vol. 110, no. 11, pp. 5029–5036, 1999. View at Scopus
  37. R. van Leeuwen and E. J. Baerends, “Exchange-correlation potential with correct asymptotic behavior,” Physical Review A, vol. 49, no. 4, pp. 2421–2431, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, “Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region,” Journal of Chemical Physics, vol. 114, no. 2, pp. 652–660, 2001. View at Publisher · View at Google Scholar
  39. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar
  40. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” Journal of Chemical Physics, vol. 98, no. 7, article 5648, 5 pages, 1993. View at Publisher · View at Google Scholar
  41. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields,” Journal of Physical Chemistry, vol. 98, no. 45, pp. 11623–11627, 1994. View at Scopus
  42. T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters, vol. 393, no. 1–3, pp. 51–57, 2004. View at Publisher · View at Google Scholar
  43. O. Kullie and T. Saue, “Range-separated density functional theory: a 4-component relativistic study of the rare gas dimers He2, Ne2, Ar2, Kr2, Xe2, Rn2 and Uuo2,” Chemical Physics, vol. 395, pp. 54–62, 2012. View at Publisher · View at Google Scholar
  44. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3B, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar
  46. W. Kohn, “Nobel lecture: electronic structure of matter—wave functions and density functionals,” Reviews of Modern Physics, vol. 71, no. 5, pp. A1133–A1266, 1999. View at Publisher · View at Google Scholar
  47. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Willy-VCH, New York, NY, USA, 2001.
  48. T. Saue and T. Helgaker, “Four-component relativistic Kohn-Sham theory,” Journal of Computational Chemistry, vol. 23, no. 8, pp. 814–823, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Kullie, H. Zhang, and D. Kolb, “Relativistic and non-relativistic local-density functional, benchmark results and investigation on the dimers Cu2,Ag2,Au2,Rg2,” Chemical Physics, vol. 351, no. 1–3, pp. 106–110, 2008. View at Publisher · View at Google Scholar
  50. O. Kullie, E. Engel, and D. Kolb, “Accurate local density functional calculations with relativistic two-spinor minimax and finite element method for the alkali dimers,” Journal of Physics B, vol. 42, no. 9, Article ID 095102, 2009. View at Publisher · View at Google Scholar
  51. P. A. M. Dirac, “Note on exchange phenomena in the Thomas atom,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 26, no. 3, pp. 376–385, 1930. View at Publisher · View at Google Scholar
  52. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation,” Physical Review Letters, vol. 82, no. 12, pp. 2544–2547, 1999. View at Scopus
  53. A. Savin, in Recent Developments of Modern Density Functional Theory, J. M. Seminario, Ed., pp. 327–357, Elsevier, Amsterdam, The Netherlands, 1996.
  54. E. Goll, H. J. Werner, and H. Stoll, “A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers,” Physical Chemistry Chemical Physics, vol. 7, pp. 3917–3923, 2005. View at Publisher · View at Google Scholar
  55. I. C. Gerber and J. G. Ángyán, “Potential curves for alkaline-earth dimers by density functional theory with long-range correlation corrections,” Chemical Physics Letters, vol. 416, no. 4–6, pp. 370–375, 2005. View at Publisher · View at Google Scholar
  56. R. Baer, E. Livshits, and U. Salzner, “Tuned range-separated hybrids in density functional theory,” Annual Review of Physical Chemistry, vol. 61, pp. 85–109, 2010. View at Publisher · View at Google Scholar
  57. K. G. Dyall, “An exact separation of the spinfree and spindependent terms of the Dirac-Coulomb-Breit Hamiltonian,” Journal of Chemical Physics, vol. 100, no. 3, article 2118, 10 pages, 1994. View at Publisher · View at Google Scholar
  58. L. Cheng and J. Gauss, “Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian,” Journal of Chemical Physics, vol. 134, no. 24, Article ID 244112, 11 pages, 2011. View at Publisher · View at Google Scholar
  59. M. A. L. Marques, C. A. Urlich, F. Nogueira, A. Rubio, K. Burke, and E. K. Gross, Eds., Time-Dependent Density Functional Theory, Lecture Notes in Physics, Springer, New York, NY, USA, 2006.
  60. E. Runge and E. K. U. Gross, “Density-functional theory for time-dependent systems,” Physical Review Letters, vol. 52, no. 12, pp. 997–1000, 84. View at Publisher · View at Google Scholar
  61. E. Gross and W. Kohn, “Time-dependent density-functional theory,” Advances in Quantum Chemistry, vol. 21, pp. 255–291, 1990. View at Publisher · View at Google Scholar
  62. M. E. Casida, in Recent Advances in Density Functional Methods, D. P. Chong, Ed., p. 155, World Scientific, Singapore, 1995.
  63. E. Gross, J. Dobson, and M. Petersilka, “Density functional theory of time-dependent phenomena,” Topics in Current Chemistry, vol. 181, pp. 81–172, 1996. View at Publisher · View at Google Scholar
  64. M. Casida, “Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals,” in Recent Developments and Applications of Modern Density Functional Theory, J. M. Seminario, Ed., chapter 11, p. 391, Elsevier, Amsterdam, The Netherlands, 1996.
  65. K. Burke and E. K. U. Gross, in Density Functionals: Theory and Applications, D. Joubert, Ed., vol. 500 of Springer Lecture Notes in Physics, p. 116, Springer, New York, NY, USA, 1998.
  66. R. van Leeuwen, “Key concepts in time-dependent density-functional theory,” International Journal of Modern Physics B, vol. 15, no. 14, pp. 1969–2023, 2001. View at Publisher · View at Google Scholar
  67. M. A. L. Marques and E. K. U. Gross, “Time dependent density functional theory,” in A Primer in Density Functional Theory, M. M. C. Fiolhais and F. Nogueira, Eds., p. 144, Springer, New York, NY, USA, 2003.
  68. H. Appel, E. K. Gross, and K. Burke, “Excitations in time-dependent density-functional theory,” Physical Review Letters, vol. 90, no. 4, Article ID 043005, 4 pages, 2003. View at Publisher · View at Google Scholar
  69. M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Annual Review of Physical Chemistry, vol. 55, pp. 427–455, 2004. View at Publisher · View at Google Scholar
  70. K. Burke, J. Werschnik, and E. Gross, “Time-dependent density functional theory: past, present, and future,” Journal of Chemical Physics, vol. 123, Article ID 062206, 12 pages, 2005. View at Publisher · View at Google Scholar
  71. P. Elliott, F. Furche, and K. Burke, in Reviews in Computational Chemistry, K. B. Lipkowitz and T. R. Cundari, Eds., pp. 91–165, Wiley, Hoboken, NJ, USA, 2009.
  72. S. Botti, A. Schindlmayr, R. Del Sole, and L. Reining, “Time-dependent density-functional theory for extended systems,” Reports on Progress in Physics, vol. 70, no. 3, pp. 357–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. O. V. Gritsenko and E. J. Baerends, “Double excitation effect in non-adiabatictime-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation,” Physical Chemistry Chemical Physics, vol. 11, pp. 4640–4646, 2009. View at Publisher · View at Google Scholar
  74. T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, and F. Wangc, “Is charge transfer transitions really too difficult for standard density functionals or are they just a problem for time-dependent density functional theory based on a linear response approach,” Journal of Molecular Structure, vol. 914, no. 1–3, pp. 106–109, 2009. View at Publisher · View at Google Scholar
  75. M. E. Casida, “Time-dependent density-functional theory for molecules and molecular solids,” Journal of Molecular Structure, vol. 914, no. 1–3, pp. 3–18, 2009. View at Publisher · View at Google Scholar
  76. M. E. Casida and M. Huix-Rotllant, “Progress in time-dependent density-functional theory,” Annual Review of Physical Chemistry, vol. 63, pp. 287–323, 2012. View at Publisher · View at Google Scholar
  77. G. Onida, R. Reininger, and A. Rubio, “Electronic excitations: density-functional versus many-body Green's-function approaches,” Reviews of Modern Physics, vol. 74, no. 2, pp. 601–659, 2002. View at Publisher · View at Google Scholar
  78. A. Zangwill and P. Soven, “Resonant photoemission in barium and cerium,” Physical Review Letters, vol. 45, no. 3, pp. 204–207, 1980. View at Publisher · View at Google Scholar
  79. M. Iliaš and T. Saue, “An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation,” Journal of Chemical Physics, vol. 126, no. 6, Article ID 064102, 9 pages, 2007. View at Publisher · View at Google Scholar
  80. L. Visscher and T. Saue, “Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation,” Journal of Chemical Physics, vol. 113, no. 10, pp. 3996–4002, 2000. View at Scopus
  81. L. Visscher and K. G. Dyall, “Dirac-fock atomic electronic structure calculations using different nuclear charge distributions,” Atomic Data and Nuclear Data Tables, vol. 67, no. 2, pp. 207–224, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Dunning, “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” Journal of Chemical Physics, vol. 90, no. 2, article 1007, 17 pages, 1989. View at Publisher · View at Google Scholar
  83. D. Woon and T. Dunning, “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon,” Journal of Chemical Physics, vol. 98, no. 2, article 1358, 14 pages, 1993. View at Publisher · View at Google Scholar
  84. A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton,” Journal of Chemical Physics, vol. 110, no. 16, pp. 7667–7676, 1999. View at Scopus
  85. M. A. Czajkkowski and J. Koperski, “The Cd2 and Zn2 van der Waals dimers revisited. Correction for some molecular potential parameters,” Spectrochimica Acta, vol. 55, no. 11, pp. 2221–2229, 1999. View at Publisher · View at Google Scholar
  86. R. D. Van Zee, S. C. Blankespoor, and T. Z. Zweir, “Direct spectroscopic determination of the Hg2 bond length and an analysis of the 2540 Å band,” Journal of Chemical Physics, vol. 88, no. 8, article 4650, 5 pages, 1988. View at Publisher · View at Google Scholar
  87. A. Aguado, J. de la Vega, and B. Miguel, “Ab initio configuration interactioncalculations of ground state and lower excited states of Zn2 using optimized Slater-typewavefunctions,” Journal of the Chemical Society, Faraday Transactions, vol. 93, no. 1, pp. 29–32, 1997. View at Publisher · View at Google Scholar
  88. H. Tatewaki, M. Tomonari, and T. Nakamura, “The excited states of Zn2 and Zn3. Inclusion of the correlation effects,” The Journal of Chemical Physics, vol. 82, no. 12, pp. 5608–5615, 1984. View at Scopus
  89. P. J. Hay, T. H. Dunning, and R. C. Raffenetti, “Electronic states of Zn2. Ab initio calculations of a prototype for Hg2,” The Journal of Chemical Physics, vol. 65, no. 7, pp. 2679–2689, 1976. View at Scopus
  90. J. J. Determan, M. A. Omary, and A. K. Wilson, “Modeling the photophysics of Zn and Cd monomers, metallophilic dimers, and covalent excimers,” Journal of Physical Chemistry A, vol. 115, no. 4, pp. 374–382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. C. H. Su, P. K. Liao, Y. Huang, S. Liou, and R. F. Brebick, “A study of the symmetric charge transfer reaction H+2+H2 using the high resolution photoionization and crossed ion-neutral beam methods,” Journal of Chemical Physics, vol. 81, no. 12, article 5672, 20 pages, 1984. View at Publisher · View at Google Scholar
  92. W. Kedzierski, J. B. Atkinson, and L. Krause, “Laser-induced fluorescence from the 3Πu (4 3P, 4 3P) state of Zn2,” Chemical Physics Letters, vol. 215, no. 1–3, pp. 185–187, 1993. View at Publisher · View at Google Scholar
  93. W. Kedzierski, J. B. Atkinson, and L. Krause, “The g+ (43P, 43P) u+ (43P, 41S) vibronic spectrum of Zn2,” Chemical Physics Letters, vol. 222, no. 1-2, pp. 146–148, 1994.
  94. G. Rodriguez and J. G. Eden, “Bound→free emission spectra and photoassociation of 114Cd2 and 64Zn2,” Journal of Chemical Physics, vol. 95, no. 8, article 5539, 14 pages, 1991. View at Publisher · View at Google Scholar
  95. W. Kedzierski, J. B. Atkinson, and L. Krause, “Laser-induced fluorescence of the Zn2 excimer,” Optics Letters, vol. 14, no. 12, pp. 607–608, 1989.
  96. M. Czajkkowski, R. Bobkowski, and L. Krause, Physical Review A, vol. 200, p. 103, 1990.
  97. T. Bally and G. N. Sastry, “Incorrect dissociation behavior of radical ions in density functional calculations,” The Journal of Physical Chemistry A, vol. 101, no. 43, pp. 7423–7925, 1997.
  98. I. Tokatly and O. Pankratov, “Many-body diagrammatic expansion in a Kohn-Sham basis: implications for time-dependent density functional theory of excited states,” Physical Review Letters, vol. 86, no. 10, pp. 2087–2081, 2001.