About this Journal Submit a Manuscript Table of Contents
Journal of Atomic and Molecular Physics
Volume 2013 (2013), Article ID 582610, 4 pages
http://dx.doi.org/10.1155/2013/582610
Research Article

Solutions to the Schrödinger Equation with Inversely Quadratic Yukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method

Theoretical Quantum Mechanics Group, Department of Pure and Applied Chemistry, University of Calabar, Calabar 00234, Nigeria

Received 20 July 2013; Revised 9 November 2013; Accepted 9 November 2013

Academic Editor: Boris A. Malomed

Copyright © 2013 B. I. Ita and A. I. Ikeuba. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Ikhdair and R. Sever, “A perturbative treatment for the energy levels of neutral atoms,” International Journal of Modern Physics A, vol. 21, no. 31, article 6465, 2006. View at Publisher · View at Google Scholar
  2. A. N. Ikot and L. E. Akpabio, “Approximate solution of Schrödinger equation with Rosen-Morse potential including a centrifugal term,” Applied Physics Research, vol. 2, no. 2, p. 202, 2010.
  3. B. I. Ita, “Bound state solutions of Schrödinger equation for Rydberg potential energy function,” Nigerian Journal of Physics, vol. 20, no. 2, p. 221, 2008. View at Publisher · View at Google Scholar
  4. S. M. Ikhdair and R. Sever, “On solutions of the Schrödinger equation for some molecular potentials: wave function ansatz,” Central European Journal of Physics, vol. 6, no. 3, pp. 697–703, 2008. View at Publisher · View at Google Scholar
  5. B. I. Ita, “Any l-state solutions of the Schrödinger equation for a more general exponential screened coulomb potential using Maclaurin's expansion and Nikifororv-Uvarov method,” International Journal of Physical Sciences, vol. 2, pp. 141–142, 2010.
  6. A. N. Ikot, “Solutions to the Klein-Gordon equation with equal scalar and vector modified Hylleraas plus exponential Rosen Morse potentials,” Chinese Physics Letters, vol. 29, no. 6, Article ID 060307, 2012. View at Publisher · View at Google Scholar
  7. A. N. Ikot, “Analytical solutions of the Schrödinger with generalized hyperbolic potential using Nikiforov-Uvarov method,” The African Review of Physics, vol. 6, pp. 221–228, 2011.
  8. S. Dong and S. H. Dong, “Schrödinger equation with a coulomb field in 2+1 dimensions,” Physica Scripta, vol. 66, no. 5, aricle 342, 2002. View at Publisher · View at Google Scholar
  9. F. Dominguez-Adame, “Bound states of the Klein-Gordon equation with vector and scalar Hulthén-type potentials,” Physics Letters A, vol. 136, no. 4-5, pp. 175–177, 1989. View at Publisher · View at Google Scholar
  10. S. H. Dong, “An algebraic approach to the harmonic oscillator plus an inverse square potential in three dimensions,” The American Journal of Applied Sciences, vol. 2, no. 1, pp. 376–382, 2005. View at Publisher · View at Google Scholar
  11. M. Hamzavi, S. M. Ikhdair, and B. I. Ita, “Approximate spin and pseudospin solutions to the Dirac equation for the inversely quadratic Yukawa potential and tensor interaction,” Physica Scripta, vol. 85, no. 4, Article ID 045009, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. B. I. Ita, “Solutions of the Schrödinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov-Uvarov method,” International Journal of Recent Advances in Physics, vol. 2, no. 4, pp. 25–233, 2013.
  13. B. I. Ita, “Arbitrary angular momentum solutions of the Schrödinger equation for Hellmann potential energy function using Maclaurin's expansion and Nikiforov-Uvarov method,” Ultra Science, vol. 21, pp. 573–578.
  14. M. Hamzavi and A. A. Rajabi, “Tensor coupling and relativistic spin and pseudospin symmetries with the Hellmann potential,” Canadian Journal of Physics, vol. 91, no. 5, pp. 411–419, 2013. View at Publisher · View at Google Scholar
  15. G. Kocak, O. Bayrak, and I. Boztosun, “Arbitrary l-state solution of the hellmann potential,” Journal of Theoretical and Computational Chemistry, vol. 6, no. 4, article 893, 2007. View at Publisher · View at Google Scholar
  16. A. F. Nikiforov and V. B. Uvarov, Functions of Mathematical Physics, Birkhäuser, Basel, Switzerland, 1988.
  17. C. Berkdemir, A. Berkdemir, and J. Han, “Bound state solutions of the Schrödinger equation for modified Kratzer's molecular potential,” Chemical Physics Letters, vol. 417, no. 4–6, pp. 326–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York, NY, USA, 1955.
  19. A. N. Ikot, O. A. Awoga, and B. I. Ita, “Bound state solutions of exponential-coshine screened coulomb plus morse potential,” Journal of Atomic and Molecular Sciences, vol. 3, no. 4, pp. 285–296, 2012. View at Publisher · View at Google Scholar