About this Journal Submit a Manuscript Table of Contents
Journal of Atomic and Molecular Physics
Volume 2013 (2013), Article ID 791353, 7 pages
http://dx.doi.org/10.1155/2013/791353
Research Article

Improving Anaerobic Digestion of Wheat Straw by Plasma-Assisted Pretreatment

1Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
2Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade, 1327 Copenhagen K, Denmark
3Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
4Masdar Institute, P.O. Box 54224, Abu Dhabi, United Arab Emirates

Received 12 February 2013; Accepted 27 March 2013

Academic Editor: Jayr de Amorim Filho

Copyright © 2013 Stefan Heiske et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. B. Ress, P. P. Calvert, C. A. Pettigrew, and M. A. Barlaz, “Testing anaerobic biodegradability of polymers in a laboratory-scale simulated landfill,” Environmental Science and Technology, vol. 32, no. 6, pp. 821–827, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S. I. Mussatto, M. Fernandes, A. M. F. Milagres, and I. C. Roberto, “Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain,” Enzyme and Microbial Technology, vol. 43, no. 2, pp. 124–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review,” Bioresource Technology, vol. 101, no. 13, pp. 4851–4861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Talebnia, D. Karakashev, and I. Angelidaki, “Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation,” Bioresource Technology, vol. 101, no. 13, pp. 4744–4753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Hartmann, I. Angelidaki, and B. K. Ahring, “Increase of anaerobic degradation of particulate organic matter in full- scale biogas plants by mechanical maceration,” Water Science and Technology, vol. 41, no. 3, pp. 145–153, 2000. View at Scopus
  6. I. Angelidaki and B. K. Ahring, “Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure,” Water Science and Technology, vol. 41, no. 3, pp. 189–194, 2000. View at Scopus
  7. Z. Mladenovska, H. Hartmann, T. Kvist, M. Sales-Cruz, R. Gani, and B. K. Ahring, “Thermal pretreatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community,” Water Science and Technology, vol. 53, no. 8, pp. 59–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hjorth, K. Gränitz, A. P. S. Adamsen, and H. B. Møller, “Extrusion as a pretreatment to increase biogas production,” Bioresource Technology, vol. 102, pp. 4989–4994, 2011.
  9. G. Lissens, A. B. Thomsen, L. De Baere, W. Verstraete, and B. K. Ahring, “Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste,” Environmental Science and Technology, vol. 38, no. 12, pp. 3418–3424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. F. Vidal and J. Molinier, “Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust,” Biomass, vol. 16, no. 1, pp. 1–17, 1988. View at Scopus
  11. K. Kratzl, P. Claus, and G. Reichel, “Reactions of lignin and lignin model compounds with ozone,” Tappi, vol. 59, no. 11, pp. 86–87, 1976. View at Scopus
  12. N. Schultz-Jensen, Z. Kádár, A. B. Thomsen, H. Bindslev, and F. Leipold, “Plasma-assisted pretreatment of wheat straw for ethanol production,” Applied Biochemistry and Biotechnology, vol. 165, pp. 1010–1023, 2011.
  13. N. Schultz-Jensen, F. Leipold, H. Bindslev, and A. B. Thomsen, “Plasma-assisted pretreatment of wheat straw,” Applied Biochemistry and Biotechnology, vol. 163, no. 4, pp. 558–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Leipold, A. Fateev, Y. Kusano, B. Stenum, and H. Bindslev, “Reduction of NO in the exhaust gas by reaction with N radicals,” Fuel, vol. 85, no. 10-11, pp. 1383–1388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Leipold, N. Schultz-Jensen, Y. Kusano, H. Bindslev, and T. Jacobsen, “Decontamination of objects in a sealed container by means of atmospheric pressure plasmas,” Food Control, vol. 22, no. 8, pp. 1296–1301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Laroussi and F. Leipold, “Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure,” International Journal of Mass Spectrometry, vol. 233, no. 1–3, pp. 81–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. B. M. Penetrante, J. N. Bardsley, and M. C. Hsiao, “Kinetic analysis of non-thermal plasmas used for pollution control,” Japanese Journal of Applied Physics, vol. 36, no. 7, pp. 5007–5017, 1997. View at Scopus
  18. F. Leipold, Y. Kusano, F. Hansen, and T. Jacobsen, “Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas,” Food Control, vol. 21, no. 8, pp. 1194–1198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. E. Greenberg, L. S. Clesceri, and A. D. Eaton, Standard Methods For the Examination of Water and Wastewater, American Public Health Association, 18th edition, 1992.
  20. I. Angelidaki, L. Ellegaard, and B. K. Ahring, “Compact automated displacement gas metering system for measurement of low gas rates from laboratory fermentors,” Biotechnology and Bioengineering, vol. 39, no. 3, pp. 351–353, 1992. View at Scopus
  21. E. Varga, A. S. Schmidt, K. Réczey, and A. B. Thomsen, “Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility,” Applied Biochemistry and Biotechnology A, vol. 104, no. 1, pp. 37–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. F. B. Castro, P. M. Hotten, E. R. Orskov, and M. Rebeller, “Inhibition of rumen microbes by compounds formed in the steam treatment of wheat straw,” Bioresource Technology, vol. 50, no. 1, pp. 25–30, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. W. S. Borneman, D. E. Akin, and W. P. VanEseltine, “Effect of phenolic monomers on ruminal bacteria,” Applied and Environmental Microbiology, vol. 52, no. 6, pp. 1331–1339, 1986. View at Scopus
  24. E. Ximenes, Y. Kim, N. Mosier, B. Dien, and M. Ladisch, “Deactivation of cellulases by phenols,” Enzyme and Microbial Technology, vol. 48, no. 1, pp. 54–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. E. Hernandez and R. G. J. Edyvean, “Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge,” Journal of Hazardous Materials, vol. 160, no. 1, pp. 20–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Torry-Smith, P. Sommer, and B. K. Ahring, “Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation,” Biotechnology and Bioengineering, vol. 84, no. 1, pp. 7–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Bruni, A. P. Jensen, and I. Angelidaki, “Steam treatment of digested biofibers for increasing biogas production,” Bioresource Technology, vol. 101, no. 19, pp. 7668–7671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. G. Hashimoto, “Effect of inoculum/substrate ratio on methane yield and production rate from straw,” Biological Wastes, vol. 28, no. 4, pp. 247–255, 1989. View at Scopus
  29. K. Boe, D. J. Batstone, J. P. Steyer, and I. Angelidaki, “State indicators for monitoring the anaerobic digestion process,” Water Research, vol. 44, no. 20, pp. 5973–5980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. B. Nielsen, H. Uellendahl, and B. K. Ahring, “Regulation and optimization of the biogas process: propionate as a key parameter,” Biomass and Bioenergy, vol. 31, no. 11-12, pp. 820–830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Holladay, J. F. White, J. J. Bozell, and D. Johnson, “Top value-added chemicals from biomass; volume II-results of screening for potential candidates from biorefinery lignin,” Tech. Rep. PNNL-16983, 2007.