About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2011 (2011), Article ID 315640, 10 pages
http://dx.doi.org/10.4061/2011/315640
Research Article

Lifespan and Glucose Metabolism in Insulin Receptor Mutant Mice

1Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
2Applied Biological Chemistry, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
3Department of Aging Control Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan

Received 13 February 2011; Revised 15 April 2011; Accepted 19 May 2011

Academic Editor: Christian Sell

Copyright © 2011 Takahiko Shimizu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Kenyon, “The plasticity of aging: insights from long-lived mutants,” Cell, vol. 120, no. 4, pp. 449–460, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. L. Partridge, D. Gems, and D. J. Withers, “Sex and death: what is the connection?” Cell, vol. 120, no. 4, pp. 461–472, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. Kenyon, J. Chang, E. Gensch, A. Rudner, and R. Tabtiang, “A C. elegans mutant that lives twice as long as wild type,” Nature, vol. 366, no. 6454, pp. 461–464, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. K. D. Kimura, H. A. Tissenbaum, Y. Liu, and G. Ruvkun, “Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans,” Science, vol. 277, no. 5328, pp. 942–946, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Lin, J. B. Dorman, A. Rodan, and C. Kenyon, “daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans,” Science, vol. 278, no. 5341, pp. 1319–1322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Ogg, S. Paradis, S. Gottlieb et al., “The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans,” Nature, vol. 389, no. 6654, pp. 994–999, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Tatar, A. Kopelman, D. Epstein, M. P. Tu, C. M. Yin, and R. S. Garofalo, “A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function,” Science, vol. 292, no. 5514, pp. 107–110, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. J. Clancy, D. Gems, L. G. Harshman et al., “Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein,” Science, vol. 292, no. 5514, pp. 104–106, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. Bartke and H. Brown-Borg, “Life extension in the dwarf mouse,” Current Topics in Developmental Biology, vol. 63, pp. 189–225, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. E. M. Eicher and W. G. Beamer, “New mouse dw allele: genetic location and effects on lifespan and growth hormone levels,” Journal of Heredity, vol. 71, no. 3, pp. 187–190, 1980. View at Scopus
  11. K. T. Coschigano, D. Clemmons, L. L. Bellush, and J. J. Kopchick, “Assessment of growth parameters and life span of GHR/BP gene-disrupted mice,” Endocrinology, vol. 141, no. 7, pp. 2608–2613, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Duvillié, N. Cordonnier, L. Deltour et al., “Phenotypic alterations in insulin-deficient mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5137–5140, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Baker, J. P. Liu, E. J. Robertson, and A. Efstratiadis, “Role of insulin-like growth factors in embryonic and postnatal growth,” Cell, vol. 75, no. 1, pp. 73–82, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Accili, J. Drago, E. J. Lee et al., “Early neonatal death in mice homozygous for a null allele of the insulin receptor gene,” Nature Genetics, vol. 12, no. 1, pp. 106–109, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. P. Liu, J. Baker, A. S. Perkins, E. J. Robertson, and A. Efstratiadis, “Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r),” Cell, vol. 75, no. 1, pp. 59–72, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. R. L. Joshi, B. Lamothe, N. Cordonnier et al., “Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality,” The EMBO Journal, vol. 15, no. 7, pp. 1542–1547, 1996. View at Scopus
  17. M. Holzenberger, J. Dupont, B. Ducos et al., “IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice,” Nature, vol. 421, no. 6919, pp. 182–187, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Blüher, B. B. Kahn, and C. R. Kahn, “Extended longevity in mice lacking the insulin receptor in adipose tissue,” Science, vol. 299, no. 5606, pp. 572–574, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. Baba, T. Shimizu, Y. I. Suzuki et al., “Estrogen, insulin, and dietary signals cooperatively regulate longevity signals to enhance resistance to oxidative stress in mice,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 16417–16426, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. Ogino, K. Sakurai, K. Yoshiwara et al., “Insulin resistance and increased pancreatic β-cell proliferation in mice expressing a mutant insulin receptor (P1195L),” Journal of Endocrinology, vol. 190, no. 3, pp. 739–747, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. Y. Matsuzawa, T. Funahashi, S. Kihara, and I. Shimomura, “Adiponectin and metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 1, pp. 29–33, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. T. Akune, S. Ohba, S. Kamekura et al., “PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors,” Journal of Clinical Investigation, vol. 113, no. 6, pp. 846–855, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. N. Beresford, J. H. Bennett, C. Devlin, P. S. Leboy, and M. E. Owen, “Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures,” Journal of Cell Science, vol. 102, no. 2, pp. 341–351, 1992. View at Scopus
  25. R. Weindruch, R. L. Walford, S. Fligiel, and D. Guthrie, “The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake,” Journal of Nutrition, vol. 116, no. 4, pp. 641–654, 1986. View at Scopus
  26. W. S. Hunter, W. B. Croson, A. Bartke, M. V. Gentry, and C. J. Meliska, “Low body temperature in long-lived Ames dwarf mice at rest and during stress,” Physiology and Behavior, vol. 67, no. 3, pp. 433–437, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. G. S. Roth, M. A. Lane, D. K. Ingram et al., “Biomarkers of caloric restriction may predict longevity in humans,” Science, vol. 297, no. 5582, p. 811, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. A. Lane, D. J. Baer, W. V. Rumpler et al., “Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 4159–4164, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. H. M. Brown-Borg, K. E. Borg, C. J. Meliska, and A. Bartke, “Dwarf mice and the ageing process,” Nature, vol. 384, no. 6604, p. 33, 1996.
  30. K. Flurkey, J. Papaconstantinou, R. A. Miller, and D. E. Harrison, “Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6736–6741, 2001. View at Publisher · View at Google Scholar · View at PubMed
  31. H. Kurosu, M. Yamamoto, J. D. Clark et al., “Physiology: suppression of aging in mice by the hormone Klotho,” Science, vol. 309, no. 5742, pp. 1829–1833, 2005. View at Publisher · View at Google Scholar · View at PubMed
  32. A. Taguchi, L. M. Wartschow, and M. F. White, “Brain IRS2 signaling coordinates life span and nutrient homeostasis,” Science, vol. 317, no. 5836, pp. 369–372, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. C. Selman, S. Lingard, A. I. Choudhury et al., “Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice,” FASEB Journal, vol. 22, no. 3, pp. 807–818, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. C. Selman, J. M. A. Tullet, D. Wieser et al., “Ribosomal protein S6 kinase 1 signaling regulates mammalian life span,” Science, vol. 326, no. 5949, pp. 140–144, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at PubMed
  36. E. Migliaccio, M. Giogio, S. Mele et al., “The p66shc adaptor protein controls oxidative stress response and life span in mammals,” Nature, vol. 402, no. 6759, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at PubMed
  37. S. I. Taylor, “Lilly lecture: molecular mechanisms of insulin resistance: lessons from patients with mutations in the insulin-receptor gene,” Diabetes, vol. 41, no. 11, pp. 1473–1490, 1992.
  38. S. I. Taylor, A. Cama, D. Accili et al., “Mutations in the insulin receptor gene,” Endocrine Reviews, vol. 13, no. 3, pp. 566–595, 1992. View at Publisher · View at Google Scholar
  39. H. Kim, H. Kadowaki, H. Sakura et al., “Detection of mutations in the insulin receptor gene in patients with insulin resistance by analysis of single-stranded conformational polymorphisms,” Diabetologia, vol. 35, no. 3, pp. 261–266, 1992.
  40. A. Krook, S. Kumar, I. Laing, A. J. M. Boulton, J. A. H. Wass, and S. O'Rahilly, “Molecular scanning of the insulin receptor gene in syndromes of insulin resistance,” Diabetes, vol. 43, no. 3, pp. 357–368, 1994.
  41. Y. Kido, N. Philippe, A. A. Schäffer, and D. Accili, “Genetic modifiers of the insulin resistance phenotype in mice,” Diabetes, vol. 49, no. 4, pp. 589–596, 2000.
  42. Y. Kido, D. J. Burks, D. Withers et al., “Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2,” Journal of Clinical Investigation, vol. 105, no. 2, pp. 199–205, 2000.