About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2011 (2011), Article ID 606871, 9 pages
http://dx.doi.org/10.4061/2011/606871
Research Article

Anatomical Correlates of Age-Related Working Memory Declines

1Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612, USA
2Duke University College of Medicine, Durham, NC 27704, USA
3Department of Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA
4Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
5Department of Anatomy & Cellular Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
6Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
7Department of Veterans Affairs, VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA
8Texas A&M Health Sciences, College of Medicine, Bryan, TX 77807, USA

Received 16 March 2011; Revised 26 August 2011; Accepted 29 August 2011

Academic Editor: Sofia Madureira

Copyright © 2011 Evan T. Schulze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Aging studies consistently show a relationship between decreased gray matter volume and decreased performance on working memory tasks. Few aging studies have investigated white matter changes in relation to functional brain changes during working memory tasks. Twenty-five younger and 25 older adults underwent anatomical magnetic resonance imaging (MRI) scans to measure gray matter volume, diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) as a measure of white matter integrity, and functional magnetic resonance imaging (fMRI) while performing a working memory task. Significant increases in activation (fMRI) were seen in the left dorsal and ventral lateral prefrontal cortex with increased working memory load and with increased age (older showing greater bilateral activation). Partial correlational analyses revealed that even after controlling for age, frontal FA correlated significantly with fMRI activation during performance on the working memory task. These findings highlight the importance of white matter integrity in working memory performance associated with normal aging.