About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2012 (2012), Article ID 304014, 13 pages
http://dx.doi.org/10.1155/2012/304014
Research Article

The Role of Lifestyle Behaviors on 20-Year Cognitive Decline

1MRC Unit for Lifelong Health and Ageing, London WC1B 5JU, UK
2Faculty of Population Health Sciences, University College London, London WC1E 6BT, UK
3School of Population Health, University of Queensland, Herston, QLD 4006, Australia
4MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK

Received 16 March 2012; Revised 27 May 2012; Accepted 3 July 2012

Academic Editor: Allison A. M. Bielak

Copyright © 2012 D. Cadar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wimo and M. Prince, “Alzheimer's disease international world Alzheimer report 2010: the global economic impact of dementia,” in Alzheimer' Disease International, London, UK, 2010.
  2. L. J. Whalley, F. D. Dick, and G. McNeill, “A life-course approach to the aetiology of late-onset dementias,” The Lancet Neurology, vol. 5, no. 1, pp. 87–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. J. Whalley, H. C. Fox, I. J. Deary, and J. M. Starr, “Childhood IQ, smoking, and cognitive change from age 11 to 64 years,” Addictive Behaviors, vol. 30, no. 1, pp. 77–88, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. M. Van Gelder, M. A. R. Tijhuis, S. Kalmijn, S. Giampaoli, A. Nissinen, and D. Kromhout, “Physical activity in relation to cognitive decline in elderly men: the FINE study,” Neurology, vol. 63, no. 12, pp. 2316–2321, 2004. View at Scopus
  5. I. J. Deary, J. Corley, A. J. Gow et al., “Age-associated cognitive decline,” British Medical Bulletin, vol. 92, no. 1, pp. 135–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Lee, J. H. Back, J. Kim et al., “Systematic review of health behavioral risks and cognitive health in older adults,” International Psychogeriatrics, vol. 22, no. 2, pp. 174–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. K. T. Phung, K. Andersen, L. V. Kessing, and G. Waldemar, “Lifestyle-related risk factors for dementia,” Ugeskrift for Laeger, vol. 168, no. 40, pp. 3401–3405, 2006. View at Scopus
  8. L. Fratiglioni and H. X. Wang, “Brain reserve hypothesis in dementia,” Journal of Alzheimer's Disease, vol. 12, no. 1, pp. 11–22, 2007. View at Scopus
  9. L. Fratiglioni, B. Winblad, and E. von Strauss, “Prevention of Alzheimer's disease and dementia. Major findings from the Kungsholmen Project,” Physiology and Behavior, vol. 92, no. 1-2, pp. 98–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sabia, H. Nabi, M. Kivimaki, M. J. Shipley, M. G. Marmot, and A. Singh-Manoux, “Health behaviors from early to late midlife as predictors of cognitive function,” American Journal of Epidemiology, vol. 170, no. 4, pp. 428–437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Lee, J. Kim, and J. H. Back, “The influence of multiple lifestyle behaviors on cognitive function in older persons living in the community,” Preventive Medicine, vol. 48, no. 1, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. P. Pronk, L. H. Anderson, A. L. Crain et al., “Meeting recommendations for multiple healthy lifestyle factors: prevalence, clustering, and predictors among adolescent, adult, and senior health plan members,” American Journal of Preventive Medicine, vol. 27, pp. 25–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Poortinga, “The prevalence and clustering of four major lifestyle risk factors in an English adult population,” Preventive Medicine, vol. 44, no. 2, pp. 124–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Mishra, K. Ball, J. Arbuckle, and D. Crawford, “Dietary patterns of Australian adults and their association with socioeconomic status: results from the 1995 National Nutrition Survey,” European Journal of Clinical Nutrition, vol. 56, no. 7, pp. 687–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Ben-Shlomo and D. Kuh, “A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives,” International Journal of Epidemiology, vol. 31, no. 2, pp. 285–293, 2002. View at Scopus
  16. D. Kuh, Y. Ben-Shlomo, J. Lynch, J. Hallqvist, and C. Power, “Life course epidemiology,” Journal of Epidemiology and Community Health, vol. 57, no. 10, pp. 778–783, 2003. View at Scopus
  17. L. J. Launer, “The epidemiologic study of dementia: a life-long quest?” Neurobiology of Aging, vol. 26, no. 3, pp. 335–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. C. Petersen, J. E. Parisi, D. W. Dickson et al., “Neuropathologic features of amnestic mild cognitive impairment,” Archives of Neurology, vol. 63, no. 5, pp. 665–672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Lamar, S. M. Resnick, and A. B. Zonderman, “Longitudinal changes in verbal memory in older adults: distinguishing the effects of age from repeat testing,” Neurology, vol. 60, no. 1, pp. 82–86, 2003. View at Scopus
  20. S. A. Small, Y. Stern, M. Tang, and R. Mayeux, “Selective decline in memory function among healthy elderly,” Neurology, vol. 52, no. 7, pp. 1392–1396, 1999. View at Scopus
  21. J. T. Becker, S. W. Davis, K. M. Hayashi et al., “Three-dimensional patterns of hippocampal atrophy in mild cognitive impairment,” Archives of Neurology, vol. 63, no. 1, pp. 97–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. N. C. Fox, W. R. Crum, R. I. Scahill, J. M. Stevens, J. C. Janssen, and M. N. Rossor, “Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images,” The Lancet, vol. 358, no. 9277, pp. 201–205, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Richards, B. Shipley, R. Fuhrer, and M. E. J. Wadsworth, “Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study,” British Medical Journal, vol. 328, no. 7439, pp. 552–554, 2004. View at Scopus
  24. A. Singh-Manoux, M. Kivimaki, M. M. Glymour et al., “Timing of onset of cognitive decline: results from Whitehall II prospective cohort study,” British Medical Journal, vol. 344, no. 7840, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” The Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Stern, “Cognitive reserve,” Neuropsychologia, vol. 47, no. 10, pp. 2015–2028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. L. Kuh and C. Cooper, “Physical activity at 36 years: patterns and childhood predictors in a longitudinal study,” Journal of Epidemiology and Community Health, vol. 46, no. 2, pp. 114–119, 1992. View at Scopus
  28. V. Mikkilä, L. Räsänen, O. T. Raitakari, P. Pietinen, and J. Viikari, “Longitudinal changes in diet from childhood into adulthood with respect to risk of cardiovascular diseases: the Cardiovascular Risk in Young Finns study,” European Journal of Clinical Nutrition, vol. 58, no. 7, pp. 1038–1045, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. V. H. Menec, “The relation between everyday activities and successful aging: a 6-year longitudinal study,” Journals of Gerontology B, vol. 58, no. 2, pp. S74–S82, 2003. View at Scopus
  30. H. Iwasa, Y. Yoshida, I. Kai, T. Suzuki, H. Kim, and H. Yoshida, “Leisure activities and cognitive function in elderly community-dwelling individuals in Japan: a 5-year prospective cohort study,” Journal of Psychosomatic Research, vol. 72, no. 2, pp. 159–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Esiri, Z. Nagy, M. Z. Smith, L. Barnetson, A. D. Smith, and C. Joachim, “Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer's disease,” The Lancet, vol. 354, no. 9182, pp. 919–920, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Wadsworth, D. Kuh, M. Richards, and R. Hardy, “Cohort profile: the 1946 National Birth Cohort (MRC National Survey of Health and Development),” International Journal of Epidemiology, vol. 35, no. 1, pp. 49–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Kuh, M. Pierce, J. Adams et al., “Cohort Profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research,” International Journal of Epidemiology, vol. 40, no. 1, Article ID dyq231, pp. e1–e9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. L. Taylor, D. R. Jacobs, and B. Schucker, “A questionnaire for the assessment of leisure time physical activities,” Journal of Chronic Diseases, vol. 31, no. 12, pp. 741–755, 1978. View at Scopus
  35. R. Cooper, G. D. Mishra, and D. Kuh, “Physical activity across adulthood and physical performance in midlife: findings from a British birth cohort,” American Journal of Preventive Medicine, vol. 41, no. 4, pp. 376–384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. G. M. Price, A. A. Paul, F. B. Key et al., “Measurement of diet in a large national survey: comparison of computerized and manual coding of records in household measures,” Journal of Human Nutrition and Dietetics, vol. 8, no. 6, pp. 417–428, 1995. View at Scopus
  37. C. J. Prynne, A. A. Paul, G. D. Mishra, D. C. Greenberg, and M. E. J. Wadsworth, “Changes in intake of key nutrients over 17 years during adult life of a British birth cohort,” British Journal of Nutrition, vol. 94, no. 3, pp. 368–376, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Köhler, M. P. J. Van Boxtel, J. Van Os et al., “Depressive symptoms and cognitive decline in community-dwelling older adults,” Journal of the American Geriatrics Society, vol. 58, no. 5, pp. 873–879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Starr, I. J. Deary, H. C. Fox, and L. J. Whalley, “Smoking and cognitive change from age 11 to 66 years: a confirmatory investigation,” Addictive Behaviors, vol. 32, no. 1, pp. 63–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Richards, M. J. Jarvis, N. Thompson, and M. E. J. Wadsworth, “Cigarette smoking and cognitive decline in midlife: evidence from a Prospective Birth Cohort study,” American Journal of Public Health, vol. 93, no. 6, pp. 994–998, 2003. View at Scopus
  41. Office of Population Censuses and Surveys, Classification of Occupations, HMSO, London, UK, 1970.
  42. D. A. Pigeon, “Tests used in the 1954 and 1957 surveys,” in The Home and the School (appendix 1), M. Wadsworth, Ed., Macgibbon & Kee, London, UK, 1964.
  43. M. Lindelow, R. Hardy, and B. Rodgers, “Development of a scale to measure symptoms of anxiety and depression in the general UK population: the psychiatric symptom frequency scale,” Journal of Epidemiology and Community Health, vol. 51, no. 5, pp. 549–557, 1997. View at Scopus
  44. D. P. Goldberg and V. F. Hillier, “A scaled version of the General Health Questionnaire,” Psychological Medicine, vol. 9, no. 1, pp. 139–145, 1979. View at Scopus
  45. T. A. Salthouse, “The processing-speed theory of adult age differences in cognition,” Psychological Review, vol. 103, no. 3, pp. 403–428, 1996. View at Scopus
  46. S. Belleville, N. Rouleau, and N. Caza, “Effect of normal aging on the manipulation of information in working memory,” Memory and Cognition, vol. 26, no. 3, pp. 572–583, 1998. View at Scopus
  47. K. J. Anstey, C. Von Sanden, A. Salim, and R. O'Kearney, “Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies,” American Journal of Epidemiology, vol. 166, no. 4, pp. 367–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. D. T. Nash, “Nutritional and exercise aspects of cognitive impairment,” Journal of Clinical Lipidology, vol. 1, no. 4, pp. 242–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Yaffe, D. Barnes, M. Nevitt, L. Y. Lui, and K. Covinsky, “A prospective study of physical activity and cognitive decline in elderly women women who walk,” Archives of Internal Medicine, vol. 161, no. 14, pp. 1703–1708, 2001. View at Scopus
  50. M. Aickin, “Dealing with change: using the conditional change model for clinical research,” The Permanente Journal, vol. 13, no. 2, pp. 80–84, 2009.
  51. M. Richards, R. Hardy, and M. E. J. Wadsworth, “Does active leisure protect cognition? Evidence from a national birth cohort,” Social Science and Medicine, vol. 56, no. 4, pp. 785–792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Sabia, A. Elbaz, A. Dugravot et al., “Impact of smoking on cognitive decline in early old age: the Whitehall II cohort study,” Archives of General Psychiatry, vol. 69, no. 6, pp. 627–635, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Rovio, I. Kåreholt, E. L. Helkala et al., “Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease,” The Lancet Neurology, vol. 4, no. 11, pp. 705–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. E. Geda, R. O. Roberts, D. S. Knopman et al., “Physical exercise, aging, and mild cognitive impairment a population-based study,” Archives of Neurology, vol. 67, no. 1, pp. 80–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. T. Sturman, M. C. Morris, C. F. Mendes De Leon, J. L. Bienias, R. S. Wilson, and D. A. Evans, “Physical activity, cognitive activity, and cognitive decline in a biracial community population,” Archives of Neurology, vol. 62, no. 11, pp. 1750–1754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Shatenstein, G. Ferland, S. Belleville et al., “Diet quality and cognition among older adults from the NuAge study,” Experimental Gerontology, vol. 47, no. 5, pp. 353–360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Kesse-Guyot, H. Amieva, K. Castetbon et al., “Adherence to nutritional recommendations and subsequent cognitive performance: findings from the prospective Supplementation with Antioxidant Vitamins and Minerals 2 (SU.VI.MAX 2) study,” American Journal of Clinical Nutrition, vol. 93, no. 1, pp. 200–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Scarmeas, Y. Stern, M. X. Tang, R. Mayeux, and J. A. Luchsinger, “Mediterranean diet (MeDi) and risk of Alzheimer's disease (AD),” Neurology, vol. 66, no. 5, p. 309, 2006.
  59. V. Solfrizzi, V. Frisardi, D. Seripa et al., “Mediterranean diet in predementia and dementia syndromes,” Current Alzheimer Research, vol. 8, no. 5, pp. 520–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Gu, J. W. Nieves, Y. Stern, J. A. Luchsinger, and N. Scarmeas, “Food combination and alzheimer disease risk: a protective diet,” Archives of Neurology, vol. 67, no. 6, pp. 699–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Hanseeuw and A. Ivanoiu, “Performance on the RI-48 cued recall test best predicts conversion to dementia at the 5- and 10-year follow-ups,” Dementia and Geriatric Cognitive Disorders Extra, vol. 1, no. 1, pp. 258–266, 2011.
  62. E. Aretouli, O. C. Okonkwo, J. Samek, and J. Brandt, “The fate of the 0.5s: predictors of 2-year outcome in mild cognitive impairment,” Journal of the International Neuropsychological Society, vol. 17, no. 2, pp. 277–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Hamer and Y. Chida, “Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence,” Psychological Medicine, vol. 39, no. 1, pp. 3–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. S. J. Colcombe, K. I. Erickson, N. Raz et al., “Aerobic fitness reduces brain tissue loss in aging humans,” Journals of Gerontology A, vol. 58, no. 2, pp. 176–180, 2003. View at Scopus
  65. J. Prickaerts, G. Koopmans, A. Blokland, and A. Scheepens, “Learning and adult neurogenesis: survival with or without proliferation?” Neurobiology of Learning and Memory, vol. 81, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. C. W. Cotman and C. Engesser-Cesar, “Exercise enhances and protects brain function,” Exercise and Sport Sciences Reviews, vol. 30, no. 2, pp. 75–79, 2002. View at Scopus
  67. S. A. Neeper, F. Gómez-Pinilla, J. Choi, and C. W. Cotman, “Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain,” Brain Research, vol. 726, no. 1-2, pp. 49–56, 1996. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Edman, L. Edenbrandt, J. Freden-Lindqvist, M. Nilsson, and A. Wallin, “Asymmetric cerebral blood flow in patients with mild cognitive impairment: possible relationship to further cognitive deterioration,” Dementia and Geriatric Cognitive Disorders Extra, vol. 1, no. 1, pp. 228–236, 2011.
  69. B. V. Zlokovic, “Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders,” Nature Reviews Neuroscience, vol. 12, no. 12, pp. X723–X738, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. W. W. Spirduso, “Physical fitness, aging, and psychomotor speed: a review,” Journals of Gerontology, vol. 35, no. 6, pp. 850–865, 1980. View at Scopus
  71. M. Woodward, C. Bolton-Smith, and H. Tunstall-Pedoe, “Deficient health knowledge, diet, and other lifestyles in smokers: is a multifactorial approach required?” Preventive Medicine, vol. 23, no. 3, pp. 354–361, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Scarmeas, J. A. Luchsinger, N. Schupf et al., “Physical activity, diet, and risk of Alzheimer disease,” Journal of the American Medical Association, vol. 302, no. 6, pp. 627–637, 2009. View at Publisher · View at Google Scholar · View at Scopus