About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2012 (2012), Article ID 324968, 9 pages
http://dx.doi.org/10.1155/2012/324968
Review Article

New Insights in the Amyloid-Beta Interaction with Mitochondria

Department of Pathology and Neuropathology, Hospital of Meixoeiro, University Hospital of Vigo, Meixoeiro s/n, 36215 Vigo, Spain

Received 28 November 2011; Accepted 11 January 2012

Academic Editor: Jan Vijg

Copyright © 2012 Carlos Spuch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. OECD, “Dementia prevalence,” in OECD, Health at a Glance: Europe 2010, pp. 54–55, OECD, 2010.
  2. L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” The Journal of Clinical Investigation, vol. 115, no. 6, pp. 1449–1457, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. P. Ferri, M. Prince, C. Brayne et al., “Global prevalence of dementia: a Delphi consensus study,” The Lancet, vol. 366, no. 9503, pp. 2112–2117, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. American Health Assistance Foundation. Alzheimer disease research: about Alzheimer, http://www.ahaf.org/alzheimers/.
  5. O. V. Forlenza, B. S. Diniz, and W. F. Gattaz, “Diagnosis and biomarkers of predementia in Alzheimer's disease,” BMC Medicine, vol. 8, article 89, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. Gotz, A. Eckert, M. Matamales, et al., “Modes of Ab toxicity in Alzheimer’s disease,” Cellular and Molecular Life Science, vol. 68, no. 20, pp. 3359–3375, 2011.
  7. A. Eckert, S. Hauptmann, I. Scherping et al., “Oligomeric and fibrillar species of β-amyloid (Aβ42) both impair mitochondrial function in P301L tau transgenic mice,” Journal of Molecular Medicine, vol. 86, no. 11, pp. 1255–1267, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Hauptmann, I. Scherping, S. Dröse et al., “Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice,” Neurobiology of Aging, vol. 30, no. 10, pp. 1574–1586, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. W. Lustbader, M. Cirilli, C. Lin et al., “ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease,” Science, vol. 304, no. 5669, pp. 448–452, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. A. Clark, H. P. Lee, R. K. Rolston et al., “Oxidative stress and its implications for future treatments and management of alzheimer disease,” International Journal of Biomedical Science, vol. 6, no. 3, pp. 225–227, 2010. View at Scopus
  11. X. Wang, B. Su, S. L. Siedlak et al., “Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19318–19323, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. Bogdanovic, M. Zilmer, K. Zilmer, A. Rehema, and E. Karelson, “The Swedish APP670/671 Alzheimer's disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex,” Dementia and Geriatric Cognitive Disorders, vol. 12, no. 6, pp. 364–370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Praticò, K. Uryu, S. Leight, J. Q. Trojanoswki, and V. M. Y. Lee, “Increased lipid peroxidation precedes amyloid plaque formation in an animal model of alzheimer amyloidosis,” Journal of Neuroscience, vol. 21, no. 12, pp. 4183–4187, 2001. View at Scopus
  14. A. Martínez-García, I. Sastre, M. Recuero et al., “PLA2G3, a gene involved in oxidative stress induced death, is associated with Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 22, no. 4, pp. 1181–1187, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. T. Vargas, C. Ugalde, C. Spuch et al., “Aβ accumulation in choroid plexus is associated with mitochondrial-induced apoptosis,” Neurobiology of Aging, vol. 31, no. 9, pp. 1569–1581, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. Perez-Gracia, R. Blanco, M. Carmona, E. Carro, and I. Ferrer, “Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer's disease,” Acta Neuropathologica, vol. 118, no. 4, pp. 497–504, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. G. Freya and C. A. Mannellab, “The internal structure of mitochondria,” Trends in Biochemical Sciences, vol. 25, no. 7, pp. 319–324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Anderson, A. T. Bankier, and B. G. Barrell, “Sequence and organization of the human mitochondrial genome,” Nature, vol. 290, no. 5806, pp. 457–465, 1981. View at Scopus
  19. R. E. Giles, H. Blanc, H. M. Cann, and D. C. Wallace, “Maternal inheritance of human mitochondrial DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 11, pp. 6715–6719, 1980. View at Scopus
  20. X. J. Chen and R. A. Butow, “The organization and inheritance of the mitochondrial genome,” Nature Reviews Genetics, vol. 6, no. 11, pp. 815–825, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. A. Cam, C. V. Zerbinatti, J. M. Knisely, S. Hecimovic, Y. Li, and G. Bu, “The low density lipoprotein receptor-related protein 1B retains β-amyloid precursor protein at the cell surface and reduces amyloid-β peptide production,” The Journal of Biological Chemistry, vol. 279, no. 28, pp. 29639–29646, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. Q. Liu, C. V. Zerbinatti, J. Zhang et al., “Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1,” Neuron, vol. 56, no. 1, pp. 66–78, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. E. Waldron, C. Heilig, A. Schweitzer et al., “LRP1 modulates APP trafficking along early compartments of the secretory pathway,” Neurobiology of Disease, vol. 31, no. 2, pp. 188–197, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. X. Alvira-Botero, R. Perez-Gonzalez, C. Spuch, et al., “Megalin interact with APP and the intracellular adaptor protein FE65 in neurons,” Molecular and Cellular Neuroscience, vol. 45, pp. 306–315, 2010.
  25. R. Deane, S. D. Yan, R. K. Submamaryan et al., “RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain,” Nature Medicine, vol. 9, no. 7, pp. 907–913, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. P. H. Reddy, “Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer's disease,” Journal of Neurochemistry, vol. 96, no. 1, pp. 1–13, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. L. Devi, B. M. Prabhu, D. F. Galati, N. G. Avadhani, and H. K. Anandatheerthavarada, “Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction,” Journal of Neuroscience, vol. 26, no. 35, pp. 9057–9068, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. Manczak, T. S. Anekonda, E. Henson, B. S. Park, J. Quinn, and P. H. Reddy, “Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression,” Human Molecular Genetics, vol. 15, no. 9, pp. 1437–1449, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. M. F. Beal, “Mitochondria take center stage in aging and neurodegeneration,” Annals of Neurology, vol. 58, no. 4, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. H. Reddy, “Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons,” Antioxidants and Redox Signaling, vol. 9, no. 10, pp. 1647–1658, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. Nuramaki, N. Murata, Y. Noda, et al., “SOD1 deficiency drives amyloid beta oligomerization and memory loss in a mouse model of Alzheimer’s diserase,” The The Journal of Biological Chemistry. In press.
  32. M. Mancuso, D. Orsucci, A. LoGerfo, V. Calsolaro, and G. Siciliano, “Clinical features and pathogenesis of Alzheimer's disease: involvement of mitochondria and mitochondrial DNA,” Advances in Experimental Medicine and Biology, vol. 685, pp. 34–44, 2010. View at Scopus
  33. D. F. F. Silva, A. R. Esteves, D. M. Arduino, C. R. Oliveira, and S. M. Cardoso, “Amyloid-β-induced mitochondrial dysfunction impairs the autophagic lysosomal pathway in a tubulin dependent pathway,” Journal of Alzheimer's Disease, vol. 26, no. 3, pp. 565–581, 2011. View at Publisher · View at Google Scholar · View at PubMed
  34. A. Eckert, K. Schmitt, and J. Gotz, “Mitochondrial dysfunction, the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid beta toxicity,” Alzheimer's Research & Therapy, vol. 3, article 15, 2011.
  35. M. Manczak, B. S. Park, Y. Jung, and P. H. Reddy, “Differential expression of oxide phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage,” NeuroMolecular Medicine, vol. 5, no. 2, pp. 147–162, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. K. Hirai, G. Aliev, A. Nunomura et al., “Mitochondrial abnormalities in Alzheimer's disease,” Journal of Neuroscience, vol. 21, no. 9, pp. 3017–3023, 2001. View at Scopus
  37. A. Y. Abramov, L. Canevari, and M. R. Duchen, “beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons,” Journal of Neuroscience, vol. 24, no. 2, pp. 565–575, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. G. E. Gibson and Q. Shi, “A mitocentric view of Alzheimer's disease suggests multi-faceted treatments,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. S591–S607, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. H. K. Anandatheerthavarada, G. Biswas, M. A. Robin, and N. G. Avadhani, “Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells,” Journal of Cell Biology, vol. 161, no. 1, pp. 41–54, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C. Caspersen, N. Wang, J. Yao et al., “Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease,” The FASEB Journal, vol. 19, no. 14, pp. 2040–2041, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. P. Fernández-Vizarra, A. P. Fernández, S. Castro-Blanco et al., “Intra- and extracellular Aβ and PHF in clinically evaluated cases of Alzheimer's disease,” Histology and Histopathology, vol. 19, no. 3, pp. 823–844, 2004.
  43. W. D. Parker, C. M. Filley, and J. K. Parks, “Cytochrome oxidase deficiency in Alzheimer's disease,” Neurology, vol. 40, no. 8, pp. 1302–1303, 1990. View at Scopus
  44. W. D. Parker and J. K. Parks, “Cytochrome c oxidase in Alzheimer's disease brain: purification and characterization,” Neurology, vol. 45, no. 3, pp. 482–486, 1995. View at Scopus
  45. S. M. Cardoso, I. Santana, R. H. Swerdlow, and C. R. Oliveira, “Mitochondria dysfunction of Alzheimer's disease cybrids enhances Aβ toxicity,” Journal of Neurochemistry, vol. 89, no. 6, pp. 1417–1426, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. V. Rhein, X. Song, A. Wiesner et al., “Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, pp. 20057–20062, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. R. J. Mark, Z. Pang, J. W. Geddes, K. Uchida, and M. P. Mattson, “Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation,” Journal of Neuroscience, vol. 17, no. 3, pp. 1046–1054, 1997. View at Scopus
  48. M. P. Mattson, “Pathways towards and away from Alzheimer's disease,” Nature, vol. 430, no. 7000, pp. 631–639, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. H. Du, L. Guo, W. Zhang, M. Rydzewska, and S. Yan, “Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model,” Neurobiology of Aging, vol. 32, pp. 398–406, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. U. Keil, S. Hauptmann, A. Bonert, I. Scherping, A. Eckert, and W. E. Müller, “Mitochondrial dysfunction induced by disease relevant AβPP and tau protein mutations,” Journal of Alzheimer's Disease, vol. 9, no. 2, pp. 139–146, 2006. View at Scopus
  51. P. I. Moreira, C. Carvalho, X. Zhu, M. A. Smith, and G. Perry, “Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 2–10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. C. G. Glabe and R. Kayed, “Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis,” Neurology, vol. 66, no. 2, pp. S74–S78, 2006. View at Scopus
  53. S. Chang, T. R. Ma, R. D. Miranda, M. E. Balestra, R. W. Mahley, and Y. Huang, “Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18694–18699, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. E. A. Schon and E. Area-Gomez, “Is Alzheimer's disease a disorder of mitochondria-associated membranes?” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. S281–S292, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. G. C. Kujoth and T. A. Prolla, “Evolving insight into the role of mitochondrial DNA mutations in aging,” Experimental Gerontology, vol. 43, no. 1, pp. 20–23, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. G. C. Kujoth, P. C. Bradshaw, S. Haroon, and T. A. Prolla, “The role of mitochondrial DNA mutations in mammalian aging,” PLoS Genetics, vol. 3, no. 2, article e24, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. A. Dogan and A. Trifunovic, “Modelling mitochondrial dysfunction in mice,” Physiological Research, vol. 60, pp. 61–70, 2011.
  58. I. Bratic and A. Trifunovic, “Mitochondrial energy metabolism and ageing,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 961–967, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. S. Z. Imam, B. Karahalil, B. A. Hogue, N. C. Souza-Pinto, and V. A. Bohr, “Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner,” Neurobiology of Aging, vol. 27, no. 8, pp. 1129–1136, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. Sastre, A. Millan, J. G. De La Asuncion et al., “A ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress,” Free Radical Biology and Medicine, vol. 24, no. 2, pp. 298–304, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. M. T. Lin, D. K. Simon, C. H. Ahn, L. M. Kim, and M. Flint Beal, “High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain,” Human Molecular Genetics, vol. 11, no. 2, pp. 133–145, 2002. View at Scopus
  62. P. E. Coskun, M. F. Beal, and D. C. Wallace, “Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10726–10731, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. P. E. Coskun, J. Wyrembak, O. Derbereva et al., “Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and down syndrome dementia,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. S293–S310, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. J. M. Shoffner, M. D. Brown, A. Torroni et al., “Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients,” Genomics, vol. 17, no. 1, pp. 171–184, 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. R. H. Swerdlow, “Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies,” Journal of Neuroscience Research, vol. 85, no. 15, pp. 3416–3428, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. M. Newman, I. F. Musgrave, and M. Lardelli, “Alzheimer’s disease: amyloidogenesis, the presenilins and animal models,” Biochimica et Biophysica Acta, vol. 1772, no. 9, pp. 285–297, 2007.
  67. E. Richartz, S. Noda, K. Schott, A. Günthner, P. Lewczuk, and M. Bartels, “Increased serum levels of CD95 in Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 13, no. 3, pp. 178–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Zarkovic, “4-Hydroxynonenal and neurodegenerative diseases,” Molecular Aspects of Medicine, vol. 24, no. 4-5, pp. 293–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. E. A. Schon and S. Przedborski, “Mitochondria: the next neurodegeneration,” Neuron, vol. 70, pp. 1033–1053, 2011.
  70. K. Brickley and F. A. Stephenson, “Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons,” The Journal of Biological Chemistry, vol. 286, no. 20, pp. 18079–18092, 2011. View at Publisher · View at Google Scholar · View at PubMed
  71. F. Gillardon, W. Rist, L. Kussmaul et al., “Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition,” Proteomics, vol. 7, no. 4, pp. 605–616, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. H. Du and S. S. Yan, “Mitochondrial medicine for neurodegenerative diseases,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 5, pp. 560–572, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. A. Eckert, S. Hauptmann, I. Scherping et al., “Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice,” Neurodegenerative Diseases, vol. 5, no. 3-4, pp. 157–159, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. J. Yao, R. W. Irwin, L. Zhao, J. Nilsen, R. T. Hamilton, and R. D. Brinton, “Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14670–14675, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. H. Du, L. Guo, F. Fang et al., “Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease,” Nature Medicine, vol. 14, no. 10, pp. 1097–1105, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. X. Wang, B. Su, H. G. Lee et al., “Impaired balance of mitochondrial fission and fusion in Alzheimer's disease,” Journal of Neuroscience, vol. 29, no. 28, pp. 9090–9103, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. M. O. Dietrich, C. Spuch, D. Antequera et al., “Megalin mediates the transport of leptin across the blood-CSF barrier,” Neurobiology of Aging, vol. 29, no. 6, pp. 902–912, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. Deane and B. V. Zlokovic, “Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease,” Current Alzheimer Research, vol. 4, no. 2, pp. 191–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Spuch and C. Navarro, “Expression and functions of LRP-2 in central nervous system: progress in understanding its regulation and the potential use for treatment of neurodegenerative diseases,” Recent Pat Immunology, Endocrine and metabolic Agents in Medicinal Chemistry, vol. 10, pp. 249–254, 2010.
  80. C. Spuch and C. Navarro, “Expression and functions of LRP-2 in central nervous system: progress in understanding its regulation and the potential use for treatment of neurodegenerative diseases,” Endocrine, Metabolic & Immune Drug Discovery, vol. 4, pp. 190–205, 2010.
  81. S. G. Anthony, H. M. Schipper, R. Tavares et al., “Stress protein expression in the Alzheimer-diseased choroid plexus,” Endocrine, Metabolic & Immune Drug Discovery, vol. 5, pp. 171–177, 2003.
  82. E. Perez-Gracia, R. Blanco, M. Carmona, E. Carro, and I. Ferrer, “Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer's disease,” Acta Neuropathologica, vol. 118, no. 4, pp. 497–504, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. T. Vargas, C. Ugalde, C. Spuch et al., “Aβ accumulation in choroid plexus is associated with mitochondrial-induced apoptosis,” Neurobiology of Aging, vol. 31, no. 9, pp. 1569–1581, 2010. View at Publisher · View at Google Scholar · View at PubMed
  84. T. Vargas, D. Antequera, C. Ugalde, and C. Spuch, “Gelsolin restores Aβ -Induced alterations in choroid plexus epithelium,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 805405, 7 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. D. Antequera, T. Vargas, C. Ugalde et al., “Cytoplasmic gelsolin increases mitochondrial activity and reduces Aβ burden in a mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 36, no. 1, pp. 42–50, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. P. H. Reddy and M. F. Beal, “Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease,” Trends in Molecular Medicine, vol. 14, no. 2, pp. 45–53, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus