About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2012 (2012), Article ID 386387, 10 pages
http://dx.doi.org/10.1155/2012/386387
Clinical Study

Systemic Vascular Function Is Associated with Muscular Power in Older Adults

1Human Performance Laboratory, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
2Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
3The Vascular Function Study Group, Division of Cardiology and the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA

Received 13 April 2012; Revised 23 June 2012; Accepted 6 July 2012

Academic Editor: Karl Rosengren

Copyright © 2012 Kevin S. Heffernan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hirvensalo, T. Rantanen, and E. Heikkinen, “Mobility difficulties and physical activity as predictors of mortality and loss of independence in the community-living older population,” Journal of the American Geriatrics Society, vol. 48, no. 5, pp. 493–498, 2000. View at Scopus
  2. J. M. Guralnik, A. Z. LaCroix, L. G. Branch, S. V. Kasl, and R. B. Wallace, “Morbidity and disability in older persons in the years prior to death,” American Journal of Public Health, vol. 81, no. 4, pp. 443–447, 1991. View at Scopus
  3. K. F. Reid and R. A. Fielding, “Skeletal muscle power: a critical determinant of physical functioning in older adults,” Exercise and Sport Sciences Reviews, vol. 40, no. 1, pp. 4–12, 2012. View at Publisher · View at Google Scholar
  4. D. A. Skelton, J. Kennedy, and O. M. Rutherford, “Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65,” Age and Ageing, vol. 31, no. 2, pp. 119–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Bean, D. K. Kiely, S. Herman et al., “The relationship between leg power and physical performance in mobility-limited older people,” Journal of the American Geriatrics Society, vol. 50, no. 3, pp. 461–467, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. F. Bean, S. G. Leveille, D. K. Kiely, S. Bandinelli, J. M. Guralnik, and L. Ferrucci, “A comparison of leg power and leg strength within the inCHIANTI study: which influences mobility more?” Journals of Gerontology, vol. 58, no. 8, pp. 728–733, 2003. View at Scopus
  7. J. F. Bean, D. K. Kiely, S. Larose, R. Goldstein, W. R. Frontera, and S. G. Leveille, “Are changes in leg power responsible for clinically meaningful improvements in mobility in older adults?” Journal of the American Geriatrics Society, vol. 58, no. 12, pp. 2363–2368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Ferrucci, J. M. Guralnik, M. Pahor, M. C. Corti, and R. J. Havlik, “Hospital diagnoses, Medicare charges, and nursing home admissions in the year when older persons become severely disabled,” Journal of the American Medical Association, vol. 277, no. 9, pp. 728–734, 1997. View at Scopus
  9. L. P. Fried, W. H. Ettinger, B. Lind, A. B. Newman, and J. Gardin, “Physical disability in older adults: a physiological approach. Cardiovascular Health Study Research Group,” Journal of Clinical Epidemiology, vol. 47, no. 7, pp. 747–760, 1994. View at Publisher · View at Google Scholar
  10. L. P. Fried and J. M. Guralnik, “Disability in older adults: evidence regarding significance, etiology, and risk,” Journal of the American Geriatrics Society, vol. 45, no. 1, pp. 92–100, 1997. View at Scopus
  11. E. G. Lakatta and D. Levy, “Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease,” Circulation, vol. 107, no. 1, pp. 139–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. S. Najjar, A. Scuteri, and E. G. Lakatta, “Arterial aging: is it an immutable cardiovascular risk factor?” Hypertension, vol. 46, no. 3, pp. 454–462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Welsch, D. A. Dobrosielski, A. A. Arce-Esquivel et al., “The association between flow-mediated dilation and physical function in older men,” Medicine and Science in Sports and Exercise, vol. 40, no. 7, pp. 1237–1243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Patel, J. T. Kuvin, D. DeNofrio et al., “Peripheral vascular endothelial function correlates with exercise capacity in cardiac transplant recipients,” American Journal of Cardiology, vol. 91, no. 7, pp. 897–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. R. Patel, J. T. Kuvin, K. A. Sliney, W. M. Rand, N. G. Pandian, and R. H. Karas, “Peripheral vascular endothelial function correlates with exercise capacity in women,” Clinical Cardiology, vol. 28, no. 9, pp. 433–436, 2005. View at Scopus
  16. K. S. Heffernan, R. H. Karas, E. A. Patvardhan, and J. T. Kuvin, “Endothelium-dependent vasodilation is associated with exercise capacity in smokers and non-smokers,” Vascular Medicine, vol. 15, no. 2, pp. 119–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. E. Deanfield, J. P. Halcox, and T. J. Rabelink, “Endothelial function and dysfunction: testing and clinical relevance,” Circulation, vol. 115, no. 10, pp. 1285–1295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. N. Proctor and B. A. Parker, “Vasodilation and vascular control in contracting muscle of the aging human,” Microcirculation, vol. 13, no. 4, pp. 315–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Maréchal and P. Gailly, “Effects of nitric oxide on the contraction of skeletal muscle,” Cellular and Molecular Life Sciences, vol. 55, no. 8-9, pp. 1088–1102, 1999. View at Scopus
  20. M. Y. Ibrahim and O. M. Ashour, “Changes in nitric oxide and free radical levels in rat gastrocnemius muscle during contraction and fatigue,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 12, pp. 791–795, 2011. View at Publisher · View at Google Scholar
  21. J. M. Guralnik, E. M. Simonsick, L. Ferrucci et al., “A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission,” Journals of Gerontology, vol. 49, no. 2, pp. M85–M94, 1994. View at Scopus
  22. A. A. Alsheikh-Ali, H. Z. Ouda, N. Pandian, R. H. Karas, and J. T. Kuvin, “Evaluation of peripheral vascular endothelial function with a portable ultrasound device,” Echocardiography, vol. 23, no. 8, pp. 623–626, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. T. Kuvin, A. R. Patel, K. A. Sliney et al., “Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease,” Journal of the American College of Cardiology, vol. 38, no. 7, pp. 1843–1849, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. T. Kuvin, A. Mammen, P. Mooney, A. A. Alsheikh-Ali, and R. H. Karas, “Assessment of peripheral vascular endothelial function in the ambulatory setting,” Vascular Medicine, vol. 12, no. 1, pp. 13–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Kelly, C. Hayward, A. Avolio, and M. O'Rourke, “Nonivasive determination of age-related changes in the human arterial pulse,” Circulation, vol. 80, no. 6, pp. 1652–1659, 1989. View at Scopus
  26. K. Takazawa, N. Tanaka, K. Takeda, F. Kurosu, and C. Ibukiyama, “Underestimation of vasodilator effects of nitroglycerin by upper limb blood pressure,” Hypertension, vol. 26, no. 3, pp. 520–523, 1995. View at Scopus
  27. M. J. Haller, J. H. Silverstein, and J. J. Shuster, “Correlation between radial artery tonometry- and fingertip tonometry-derived augmentation index in children with type 1 diabetes,” Diabetes and Vascular Disease Research, vol. 4, no. 1, p. 66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Dhindsa, J. N. Barnes, A. E. DeVan, J. Sugawara, and H. Tanaka, “Comparison of augmentation index derived from multiple devices,” Artery Research, vol. 5, pp. 112–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Reisner, R. Lusky, Y. Shay-El, R. Schnall, and S. Herscovici, “Reproducibility of endothelial function and arterial stiffness assessed using finger peripheral arterial tonometry,” European Heart Journal, vol. 28, supplement, p. 484, 2007.
  30. J. Liu, J. Wang, Y. Jin, H. J. Roethig, and M. Unverdorben, “Variability of peripheral arterial tonometry in the measurement of endothelial function in healthy men,” Clinical Cardiology, vol. 32, no. 12, pp. 700–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Onkelinx, V. Cornelissen, K. Goetschalckx, T. Thomaes, P. Verhamme, and L. Vanhees, “Reproducibility of different methods to measure the endothelial function,” Vascular Medicine, vol. 17, no. 2, pp. 79–84, 2012. View at Publisher · View at Google Scholar
  32. G. V. Ostir, S. Volpato, L. P. Fried, P. Chaves, and J. M. Guralnik, “Reliability and sensitivity to change assessed for a summary measure of lower body function: results from the Women's Health and Aging Study,” Journal of Clinical Epidemiology, vol. 55, no. 9, pp. 916–921, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Guralnik, L. Ferrucci, E. M. Simonsick, M. E. Salive, and R. B. Wallace, “Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability,” New England Journal of Medicine, vol. 332, no. 9, pp. 556–561, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. R. J. Carabello, K. F. Reid, D. J. Clark, E. M. Phillips, and R. A. Fielding, “Lower extremity strength and power asymmetry assessment in healthy and mobility-limited populations: reliability and association with physical functioning,” Aging, vol. 22, no. 4, pp. 324–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. Pojednic, D. J. Clark, C. Patten, K. Reid, E. M. Phillips, and R. A. Fielding, “The specific contributions of force and velocity to muscle power in older adults,” Experimental Gerontology, vol. 47, no. 8, pp. 608–613, 2012. View at Publisher · View at Google Scholar
  36. D. P. Credeur, M. A. Welsch, D. A. Dobrosielski, and A. A. Arce-Esquivel, “Brachial artery retrograde flow increases with age: relationship to physical function,” European Journal of Applied Physiology, vol. 107, no. 2, pp. 219–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. W. G. Schrage, J. H. Eisenach, and M. J. Joyner, “Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans,” Journal of Physiology, vol. 579, no. 1, pp. 227–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. B. S. Kirby, W. F. Voyles, C. B. Simpson, R. E. Carlson, W. G. Schrage, and F. A. Dinenno, “Endothelium-dependent vasodilatation and exercise hyperaemia in ageing humans: impact of acute ascorbic acid administration,” Journal of Physiology, vol. 587, no. 9, pp. 1989–2003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Goto, K. Nishioka, T. Umemura et al., “Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans,” American Journal of Hypertension, vol. 20, no. 8, pp. 825–830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. D. M. Gilligan, J. A. Panza, C. M. Kilcoyne, M. A. Waclawiw, P. R. Casino, and A. A. Quyyumi, “Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation,” Circulation, vol. 90, no. 6, pp. 2853–2858, 1994. View at Scopus
  41. D. L. Boveris and A. Boveris, “Oxygen delivery to the tissues and mitochondrial respiration,” Frontiers in Bioscience, vol. 12, no. 3, pp. 1014–1023, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. F. A. Dinenno, D. R. Seals, C. A. Desouza, and H. Tanaka, “Age-related decreases in basal limb blood flow in humans: time course, determinants and habitual exercise effects,” Journal of Physiology, vol. 531, no. 2, pp. 573–579, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. S. J. Ridout, B. A. Parker, S. L. Smithmyer, J. U. Gonzales, K. C. Beck, and D. N. Proctor, “Age and sex influence the balance between maximal cardiac output and peripheral vascular reserve,” Journal of Applied Physiology, vol. 108, no. 3, pp. 483–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. J. Maxwell, E. Schauble, D. Bernstein, and J. P. Cooke, “Limb blood flow during exercise is dependent on nitric oxide,” Circulation, vol. 98, no. 4, pp. 369–374, 1998. View at Scopus
  45. C. A. Fahs, K. S. Heffernan, S. Ranadive, S. Y. Jae, and B. Fernhall, “Muscular strength is inversely associated with aortic stiffness in young men,” Medicine and Science in Sports and Exercise, vol. 42, no. 9, pp. 1619–1624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Alomari, E. F. Keewan, R. A. Shammaa, K. Alawneh, S. Y. Khatib, and M. A. Welsch, “Vascular function and handgrip strength in rheumatoid arthritis patients,” The Scientific World Journal, vol. 2012, Article ID 580863, 2012.
  47. M. Ronnback, M. Hernelahti, E. Hamalainen, P. H. Groop, and H. Tikkanen, “Effect of physical activity and muscle morphology on endothelial function and arterial stiffness,” Scandinavian Journal of Medicine and Science in Sports, vol. 17, no. 5, pp. 573–579, 2007.
  48. E. L. Dillon, S. L. Casperson, W. J. Durham, et al., “Muscle protein metabolism responds similarly to exogenous amino acids in healthy younger and older adults during NO-induced hyperemia,” American Journal of Physiology, vol. 301, no. 5, pp. R1408–R1417, 2011. View at Publisher · View at Google Scholar
  49. M. Ochi, K. Kohara, Y. Tabara et al., “Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men,” Atherosclerosis, vol. 212, no. 1, pp. 327–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Deanfield, A. Donald, C. Ferri et al., “Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the working group on endothelin and endothelial factors of the European society of hypertension,” Journal of Hypertension, vol. 23, no. 1, pp. 7–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. C. Corretti, T. J. Anderson, E. J. Benjamin et al., “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 257–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. E. A. Patvardhan, K. S. Heffernan, J. M. Ruan, M. I. Soffler, R. H. Karas, and J. T. Kuvin, “Assessment of vascular endothelial function with peripheral arterial tonometry: information at your fingertips?” Cardiology in Review, vol. 18, no. 1, pp. 20–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. I. B. Wilkinson, H. MacCallum, J. R. Cockcroft, and D. J. Webb, “Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo,” British Journal of Clinical Pharmacology, vol. 53, no. 2, pp. 189–192, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. E. J. Metter, R. Conwit, J. Tobin, and J. L. Fozard, “Age-associated loss of power and strength in the upper extremities in women and men,” Journals of Gerontology, vol. 52, no. 5, pp. B267–B276, 1997. View at Scopus
  55. S. V. Brooks and J. A. Faulkner, “Skeletal muscle weakness in old age: underlying mechanisms,” Medicine and Science in Sports and Exercise, vol. 26, no. 4, pp. 432–439, 1994. View at Scopus
  56. K. J. Martins, I. MacLean, G. K. Murdoch, W. T. Dixon, and C. T. Putman, “Nitric oxide synthase inhibition delays low-frequency stimulation-induced satellite cell activation in rat fast-twitch muscle,” Applied Physiology, Nutrition and Metabolism, vol. 36, no. 6, pp. 996–1000, 2011. View at Publisher · View at Google Scholar
  57. Z. Yu, P. Li, M. Zhang, M. Hannink, J. S. Stamler, and Z. Yan, “Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli,” PLoS ONE, vol. 3, no. 5, Article ID e2086, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. D. M. Hirai, S. W. Copp, K. S. Hageman, D. C. Poole, and T. I. Musch, “Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats,” Journal of Applied Physiology, vol. 111, no. 4, pp. 989–998, 2011.
  59. T. I. Musch, K. E. Eklund, K. S. Hageman, and D. C. Poole, “Altered regional blood flow responses to submaximal exercise in older rats,” Journal of Applied Physiology, vol. 96, no. 1, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. R. M. McAllister, “Endothelium-dependent vasodilation in different rat hindlimb skeletal muscles,” Journal of Applied Physiology, vol. 94, no. 5, pp. 1777–1784, 2003. View at Scopus
  61. K. F. Reid, G. Doros, D. J. Clark, et al., “Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation,” European Journal of Applied Physiology, vol. 112, no. 6, pp. 2289–2301, 2012. View at Publisher · View at Google Scholar
  62. W. R. Frontera, K. F. Reid, E. M. Phillips et al., “Muscle fiber size and function in elderly humans: a longitudinal study,” Journal of Applied Physiology, vol. 105, no. 2, pp. 637–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. H. Laughlin and R. B. Armstrong, “Muscle blood flow during locomotory exercise,” Exercise and Sport Sciences Reviews, vol. 13, pp. 95–136, 1985. View at Scopus
  64. T. Hirai, M. D. Visneski, K. J. Kearns, R. Zelis, and T. I. Musch, “Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats,” Journal of Applied Physiology, vol. 77, no. 3, pp. 1288–1293, 1994. View at Scopus
  65. R. J. Morrison, C. C. Miller III, and M. B. Reid, “Nitric oxide effects on force-velocity characteristics of the rat diaphragm,” Comparative Biochemistry and Physiology Part A, vol. 119, no. 1, pp. 203–209, 1998.
  66. R. I. Viner, D. A. Ferrington, A. F. R. Hühmer, D. J. Bigelow, and C. Schöneich, “Accumulation of nitrotyrosine on the SERCA2a isoform of SR Ca-ATPase of rat skeletal muscle during aging: a peroxynitrite-mediated process?” FEBS Letters, vol. 379, no. 3, pp. 286–290, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Van Der Loo, R. Labugger, J. N. Skepper et al., “Enhanced peroxynitrite formation is associated with vascular aging,” Journal of Experimental Medicine, vol. 192, no. 12, pp. 1731–1743, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. T. L. Dutka, J. P. Mollica, and G. D. Lamb, “Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat,” Journal of Applied Physiology, vol. 110, no. 3, pp. 705–716, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. T. L. Dutka, J. P. Mollica, G. S. Posterino, and G. D. Lamb, “Modulation of contractile apparatus Ca2+ sensitivity and disruption of excitation-contraction coupling by S-nitrosoglutathione in rat muscle fibres,” Journal of Physiology, vol. 589, no. 9, pp. 2181–2196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. G. D. Lamb and H. Westerblad, “Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle,” Journal of Physiology, vol. 589, no. 9, pp. 2119–2127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. K. S. Heffernan, E. A. Patvardhan, N. K. Kapur, R. H. Karas, and J. T. Kuvin, “Peripheral augmentation index as a biomarker of vascular aging: an invasive hemodynamics approach,” European Journal of Applied Physiology, vol. 112, no. 8, pp. 2871–2879, 2012.
  72. D. Green, C. Cheetham, C. Reed, L. Dembo, and G. O'Driscoll, “Assessment of brachial artery blood flow across the cardiac cycle: retrograde flows during cycle ergometry,” Journal of Applied Physiology, vol. 93, no. 1, pp. 361–368, 2002. View at Scopus
  73. D. H. J. Thijssen, E. A. Dawson, T. M. Tinken, N. T. Cable, and D. J. Green, “Retrograde flow and shear rate acutely impair endothelial function in humans,” Hypertension, vol. 53, no. 6, pp. 986–992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. D. H. J. Thijssen, G. A. Rongen, P. Smits, and M. T. E. Hopman, “Physical (in)activity and endothelium-derived constricting factors: overlooked adaptations,” Journal of Physiology, vol. 586, no. 2, pp. 319–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. D. H. Thijssen, A. J. Maiorana, G. O'Driscoll, N. T. Cable, M. T. Hopman, and D. J. Green, “Impact of inactivity and exercise on the vasculature in humans,” European Journal of Applied Physiology, vol. 108, no. 5, pp. 845–875, 2010.
  76. J. Sugawara, K. Hayashi, F. Kaneko, H. Yamada, T. Kizuka, and H. Tanaka, “Reductions in basal limb blood flow and lumen diameter after short-term leg casting,” Medicine and Science in Sports and Exercise, vol. 36, no. 10, pp. 1689–1694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. N. M. Hamburg, C. J. McMackin, A. L. Huang, et al., “Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2650–2656, 2007. View at Publisher · View at Google Scholar
  78. M. Rakobowchuk, J. Crozier, E. I. Glover et al., “Short-term unilateral leg immobilization alters peripheral but not central arterial structure and function in healthy young humans,” European Journal of Applied Physiology, vol. 111, no. 2, pp. 203–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Dhindsa, S. M. Sommerlad, A. E. DeVan et al., “Interrelationships among noninvasive measures of postischemic macro- and microvascular reactivity,” Journal of Applied Physiology, vol. 105, no. 2, pp. 427–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. W. I. Yang, S. Park, J. C. Youn et al., “Augmentation index association with reactive hyperemia as assessed by peripheral arterial tonometry in hypertension,” American Journal of Hypertension, vol. 24, no. 11, pp. 1234–1238, 2011. View at Publisher · View at Google Scholar
  81. R. B. Schnabel, P. S. Wild, A. Schulz, et al., “Multiple endothelial biomarkers and noninvasive vascular function in the general population: the gutenberg health study,” Hypertension, vol. 60, no. 2, pp. 288–295, 2012.
  82. N. M. Hamburg, J. Palmisano, M. G. Larson et al., “Relation of brachial and digital measures of vascular function in the community: the framingham heart study,” Hypertension, vol. 57, no. 3, pp. 390–396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. C. R. Lee, A. Bass, K. Ellis, et al., “Relation between digital peripheral arterial tonometry and brachial artery ultrasound measures of vascular function in patients with coronary artery disease and in healthy volunteers,” American Journal of Cardiology, vol. 109, no. 5, pp. 651–657, 2012. View at Publisher · View at Google Scholar