About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2012 (2012), Article ID 512714, 9 pages
http://dx.doi.org/10.1155/2012/512714
Research Article

Association of Social Engagement with Brain Volumes Assessed by Structural MRI

1Rush Alzheimer’s Disease Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
3Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
4Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
5Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
6Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
7Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

Received 11 June 2012; Accepted 2 August 2012

Academic Editor: Alan J. Gow

Copyright © 2012 Bryan D. James et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. D. James, R. S. Wilson, L. L. Barnes, and D. A. Bennett, “Late-life social activity and cognitive decline in old age,” Journal of the International Neuropsychological Society, vol. 17, no. 6, pp. 998–1005, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. K. A. Ertel, M. M. Glymour, and L. F. Berkman, “Effects of social integration on preserving memory function in a nationally representative US elderly population,” American Journal of Public Health, vol. 98, no. 7, pp. 1215–1220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Bassuk, T. A. Glass, and L. F. Berkman, “Social disengagement and incident cognitive decline in community—dwelling elderly persons,” Annals of Internal Medicine, vol. 131, no. 3, pp. 165–173, 1999. View at Scopus
  4. L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Karp, S. Paillard-Borg, H. X. Wang, M. Silverstein, B. Winblad, and L. Fratiglioni, “Mental, physical and social components in leisure activities equally contribute to decrease dementia risk,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 2, pp. 65–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. L. Barnes, C. F. Mendes De Leon, R. S. Wilson, J. L. Bienias, and D. A. Evans, “Social resources and cognitive decline in a population of older African Americans and whites,” Neurology, vol. 63, no. 12, pp. 2322–2326, 2004. View at Scopus
  7. R. E. Holtzman, G. W. Rebok, J. S. Saczynski, A. C. Kouzis, K. W. Doyle, and W. W. Eaton, “Social network characteristics and cognition in middle-aged and older adults,” Journals of Gerontology B, vol. 59, no. 6, pp. P278–P284, 2004. View at Scopus
  8. T. E. Seeman, T. M. Lusignolo, M. Albert, and L. Berkman, “Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging,” Health Psychology, vol. 20, no. 4, pp. 243–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Fratiglioni and H. X. Wang, “Brain reserve hypothesis in dementia,” Journal of Alzheimer's Disease, vol. 12, no. 1, pp. 11–22, 2007. View at Scopus
  10. M. J. Valenzuela and P. Sachdev, “Brain reserve and cognitive decline: a non-parametric systematic review,” Psychological Medicine, vol. 36, no. 8, pp. 1065–1073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Kempermann, D. Gast, and F. H. Gage, “Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment,” Annals of Neurology, vol. 52, no. 2, pp. 135–143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. N. W. Milgram, C. T. Siwak-Tapp, J. Araujo, and E. Head, “Neuroprotective effects of cognitive enrichment,” Ageing Research Reviews, vol. 5, no. 3, pp. 354–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Diamond, “Response of the brain to enrichment,” Anais da Academia Brasileira de Ciências, vol. 73, pp. 211–220, 2001.
  14. G. Kempermann, H. G. Kuhn, and F. H. Gage, “More hippocampal neurons in adult mice living in an enriched environment,” Nature, vol. 386, no. 6624, pp. 493–495, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. B. S. Schwartz, S. Chen, B. Caffo et al., “Relations of brain volumes with cognitive function in males 45 years and older with past lead exposure,” NeuroImage, vol. 37, no. 2, pp. 633–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. N. T. Aggarwal, R. S. Wilson, J. L. Bienias et al., “The association of magnetic resonance imaging measures with cognitive function in a biracial population sample,” Archives of Neurology, vol. 67, no. 4, pp. 475–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Katzman, R. Terry, R. DeTeresa et al., “Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques,” Annals of Neurology, vol. 23, no. 2, pp. 138–144, 1988. View at Scopus
  18. B. S. Schwartz, B. Caffo, W. F. Stewart et al., “Evaluation of cumulative lead dose and longitudinal changes in structural magnetic resonance imaging in former organolead workers,” Journal of Occupational and Environmental Medicine, vol. 52, no. 4, pp. 407–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. S. Schwartz, K. I. Bolla, W. Stewart, D. P. Ford, J. Agnew, and H. Frumkin, “Decrements in neurobehavioral performance associated with mixed exposure to organic and inorganic lead,” American Journal of Epidemiology, vol. 137, no. 9, pp. 1006–1021, 1993. View at Scopus
  20. B. S. Schwartz, W. F. Stewart, K. I. Bolla et al., “Past adult lead exposure is associated with longitudinal decline in cognitive function,” Neurology, vol. 55, no. 8, pp. 1144–1150, 2000. View at Scopus
  21. W. F. Stewart, B. S. Schwartz, D. Simon, K. I. Bolla, A. C. Todd, and J. Links, “Neurobehavioral function and tibial and chelatable lead levels in 543 former organolead workers,” Neurology, vol. 52, no. 8, pp. 1610–1617, 1999. View at Scopus
  22. W. F. Stewart, B. S. Schwartz, C. Davatzikos et al., “Past adult lead exposure is linked to neurodegeneration measured by brain MRI,” Neurology, vol. 66, no. 10, pp. 1476–1484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. F. Goldszal, C. Davatzikos, D. L. Pham, M. X. H. Yan, R. N. Bryan, and S. M. Resnick, “An image-processing system for qualitative and quantitative volumetric analysis of brain images,” Journal of Computer Assisted Tomography, vol. 22, no. 5, pp. 827–837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Xue, D. Shen, and C. Davatzikos, “CLASSIC: consistent longitudinal alignment and segmentation for serial image computing,” NeuroImage, vol. 30, no. 2, pp. 388–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Shen and C. Davatzikos, “HAMMER: Hierarchical attribute matching mechanism for elastic registration,” IEEE Transactions on Medical Imaging, vol. 21, no. 11, pp. 1421–1439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. A. Glass, “Conjugating the “tenses” of function: discordance among hypothetical, experimental, and enacted function in older adults,” Gerontologist, vol. 38, no. 1, pp. 101–112, 1998. View at Scopus
  27. S. M. Resnick, D. L. Pham, M. A. Kraut, A. B. Zonderman, and C. Davatzikos, “Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain,” Journal of Neuroscience, vol. 23, no. 8, pp. 3295–3301, 2003. View at Scopus
  28. C. D. Smith, H. Chebrolu, D. R. Wekstein, F. A. Schmitt, and W. R. Markesbery, “Age and gender effects on human brain anatomy: a voxel-based morphometric study in healthy elderly,” Neurobiology of Aging, vol. 28, no. 7, pp. 1075–1087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. D. Terry, R. DeTeresa, and L. A. Hansen, “Neocortical cell counts in normal human adult aging,” Annals of Neurology, vol. 21, no. 6, pp. 530–539, 1987. View at Scopus
  30. E. Masliah, M. Mallory, L. Hansen, R. DeTeresa, and R. D. Terry, “Quantitative synaptic alterations in the human neocortex during normal aging,” Neurology, vol. 43, no. 1, pp. 192–197, 1993. View at Scopus
  31. G. L. Wenk, “Neuropathologic changes in Alzheimer's disease,” Journal of Clinical Psychiatry, vol. 64, supplement 9, pp. 7–10, 2003. View at Scopus
  32. N. Scarmeas and Y. Stern, “Cognitive reserve and lifestyle,” Journal of Clinical and Experimental Neuropsychology, vol. 25, no. 5, pp. 625–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Draganski and A. May, “Training-induced structural changes in the adult human brain,” Behavioural Brain Research, vol. 192, no. 1, pp. 137–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Gould, A. J. Reeves, M. S. A. Graziano, and C. G. Gross, “Neurogenesis in the neocortex of adult primates,” Science, vol. 286, no. 5439, pp. 548–552, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Van Praag, G. Kempermann, and F. H. Gage, “Neural Consequences of environmental enrichment,” Nature Reviews Neuroscience, vol. 1, no. 3, pp. 191–198, 2000. View at Scopus
  36. C. T. Siwak-Tapp, E. Head, B. A. Muggenburg, N. W. Milgram, and C. W. Cotman, “Region specific neuron loss in the aged canine hippocampus is reduced by enrichment,” Neurobiology of Aging, vol. 29, no. 1, pp. 39–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, Appleton & Lange, East Norwalk, Conn, USA, 3rd edition, 1991.
  38. T. L. Jernigan, S. L. Archibald, C. Fennema-Notestine et al., “Effects of age on tissues and regions of the cerebrum and cerebellum,” Neurobiology of Aging, vol. 22, no. 4, pp. 581–594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. R. I. Scahill, C. Frost, R. Jenkins, J. L. Whitwell, M. N. Rossor, and N. C. Fox, “A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging,” Archives of Neurology, vol. 60, no. 7, pp. 989–994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak, “A voxel-based morphometric study of ageing in 465 normal adult human brains,” NeuroImage, vol. 14, no. 1 I, pp. 21–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. J. S. Saczynski, L. A. Pfeifer, K. Masaki, et al., “The effect of social engagement on incident dementia and hippocampal volume: the Honolulu-Asia aging study,” Alzheimer's & Dementia, vol. 1, no. 1, supplement, p. S27, 2005.
  42. R. Cabeza, N. D. Anderson, J. K. Locantore, and A. R. McIntosh, “Aging gracefully: compensatory brain activity in high-performing older adults,” NeuroImage, vol. 17, no. 3, pp. 1394–1402, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. D. W. Desmond, J. T. Moroney, M. Sano, and Y. Stern, “Mortality in patients with dementia after ischemic stroke,” Neurology, vol. 59, no. 4, pp. 537–543, 2002. View at Scopus