About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2012 (2012), Article ID 939285, 11 pages
http://dx.doi.org/10.1155/2012/939285
Research Article

Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults

1Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3Department of Psychology, University of Pittsburgh, 3107 Sennott Square, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
4Department of Psychology, University of Iowa, Iowa city, IA 52242, USA
5Department of Psychology, The Ohio State University City, Columbus, OH 43210, USA
6Department of Psychology, University of Illinois, Champaign-Urbana at Champaign, IL 61820, USA
7Beckman Institute for Advanced Science and Technology, University of Illinois at Champaign-Urbana, Champaign, IL, USA
8Department of Psychology, The University of Texas at Dallas, Dallas, TX 75080, USA
9Department of Kinesiology and Community Health, University of Illinois, Champaign-Urbana at Champaign, IL 61820, USA

Received 31 March 2012; Accepted 3 June 2012

Academic Editor: Denis Gerstorf

Copyright © 2012 Timothy D. Verstynen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Raz, U. Lindenberger, K. M. Rodrigue et al., “Regional brain changes in aging healthy adults: general trends, individual differences and modifiers,” Cerebral Cortex, vol. 15, no. 11, pp. 1676–1689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. B. Walhovd, A. M. Fjell, A. M. Dale et al., “Multi-modal imaging predicts memory performance in normal aging and cognitive decline,” Neurobiology of Aging, vol. 31, no. 7, pp. 1107–1121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Cramer, M. Sur, B. H. Dobkin et al., “Harnessing neuroplasticity for clinical applications,” Brain, vol. 134, no. 6, pp. 1591–1609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. J. Colcombe, K. I. Erickson, P. E. Scalf et al., “Aerobic exercise training increases brain volume in aging humans,” Journals of Gerontology A, vol. 61, no. 11, pp. 1166–1170, 2006. View at Scopus
  5. K. I. Erickson, M. W. Voss, R. S. Prakash et al., “Exercise training increases size of hippocampus and improves memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 3017–3022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. I. Erickson, C. A. Raji, O. L. Lopez et al., “Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study,” Neurology, vol. 75, no. 16, pp. 1415–1422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Rovio, G. Spulber, L. J. Nieminen et al., “The effect of midlife physical activity on structural brain changes in the elderly,” Neurobiology of Aging, vol. 31, no. 11, pp. 1927–1936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Colcombe, K. I. Erickson, N. Raz et al., “Aerobic fitness reduces brain tissue loss in aging humans,” Journals of Gerontology A, vol. 58, no. 2, pp. 176–180, 2003. View at Scopus
  9. K. I. Erickson, R. S. Prakash, M. W. Voss et al., “Aerobic fitness is associated with hippocampal volume in elderly humans,” Hippocampus, vol. 19, no. 10, pp. 1030–1039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Weinstein, M. W. Voss, R. S. Prakash et al., “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain, Behavior, and Immunity, vol. 2, no. 1, pp. 32–41, 2012.
  11. A. M. Fjell and K. B. Walhovd, “Structural brain changes in aging: courses, causes and cognitive consequences,” Reviews in the Neurosciences, vol. 21, no. 3, pp. 187–221, 2010. View at Scopus
  12. E. Aarts, M. Van Holstein, and R. Cools, “Striatal dopamine and the interface between motivation and cognition,” Frontiers in Psychology, vol. 2, p. 163, 2011.
  13. R. Cools, L. Clark, and T. W. Robbins, “Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance,” Journal of Neuroscience, vol. 24, no. 5, pp. 1129–1135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Marais, D. J. Stein, and W. M. U. Daniels, “Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats,” Metabolic Brain Disease, vol. 24, no. 4, pp. 587–597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. T. Wu, M. B. Pontifex, L. B. Raine et al., “Aerobic fitness and response variability in preadolescent children performing a cognitive control task,” Neuropsychology, vol. 25, no. 3, pp. 333–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Zigmond, J. L. Cameron, R. K. Leak et al., “Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency,” Parkinsonism and Related Disorders, vol. 15, no. 3, pp. S42–S45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Y. F. Lau, D. Goldman, B. Buzas et al., “BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents,” NeuroImage, vol. 53, no. 3, pp. 952–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Tajiri, T. Yasuhara, T. Shingo et al., “Exercise exerts neuroprotective effects on Parkinson's disease model of rats,” Brain Research, vol. 1310, pp. 200–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Ahlskog, “Does vigorous exercise have a neuroprotective effect in Parkinson disease?” Neurology, vol. 77, no. 3, pp. 288–294, 2011. View at Publisher · View at Google Scholar
  20. A. D. Speelman, M. van Nimwegen, G. F. Borm, B. R. Bloem, and M. Munneke, “Monitoring of walking in Parkinson's disease: validation of an ambulatory activity monitor,” Parkinsonism and Related Disorders, vol. 17, no. 5, pp. 402–404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Chaddock, K. I. Erickson, R. S. Prakash et al., “Basal ganglia volume is associated with aerobic fitness in preadolescent children,” Developmental Neuroscience, vol. 32, no. 3, pp. 249–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Kehagia, R. A. Barker, and T. W. Robbins, “Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease,” The Lancet Neurology, vol. 9, no. 12, pp. 1200–1213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Stelzel, U. Basten, C. Montag, M. Reuter, and C. J. Fiebach, “Frontostriatal involvement in task switching depends on genetic differences in D2 receptor density,” Journal of Neuroscience, vol. 30, no. 42, pp. 14205–14212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Stern, M. Sano, J. Paulsen, and R. Mayeux, “Modified mini-mental state examination: validity and reliability,” Neurology, vol. 37, p. 179, 1987. View at Publisher · View at Google Scholar
  25. E. McAuley, A. N. Szabo, E. L. Mailey et al., “Non-exercise estimated cardiorespiratory fitness: associations with brain structure, cognition, and memory complaints in older adults,” Mental Health and Physical Activity, vol. 4, no. 1, pp. 5–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. Prakash, M. W. Voss, K. I. Erickson et al., “Cardiorespiratory fitness and attentional control in the aging brain,” Frontiers in Human Neuroscience, vol. 4, article 229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. W. Voss, K. I. Erickson, R. S. Prakash et al., “Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition?” Neuropsychologia, vol. 48, no. 5, pp. 1394–1406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. I. Sheikh and J. A. Yesavage, “Geriatric Depression Scale (GDS): recent evidence and development of a shorter version,” Clinical Gerontologist, vol. 5, no. 1-2, pp. 165–173, 1986. View at Scopus
  29. B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, “A Bayesian model of shape and appearance for subcortical brain segmentation,” NeuroImage, vol. 56, no. 3, pp. 907–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Smith, M. Jenkinson, M. W. Woolrich et al., “Advances in functional and structural MR image analysis and implementation as FSL,” NeuroImage, vol. 23, supplement 1, pp. S208–S219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Kennedy, K. I. Erickson, K. M. Rodrigue et al., “Age-related differences in regional brain volumes: a comparison of optimized voxel-based morphometry to manual volumetry,” Neurobiology of Aging, vol. 30, no. 10, pp. 1657–1676, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Miyake, N. P. Friedman, M. J. Emerson, A. H. Witzki, A. Howerter, and T. D. Wager, “The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis,” Cognitive Psychology, vol. 41, no. 1, pp. 49–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. K. J. Preacher and A. F. Hayes, “Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models,” Behavior Research Methods, vol. 40, no. 3, pp. 879–891, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. F. Hayes, “Beyond Baron and Kenny: statistical mediation analysis in the new millennium,” Communication Monographs, vol. 76, no. 4, pp. 408–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Colcombe, A. F. Kramer, K. I. Erickson et al., “Cardiovascular fitness, cortical plasticity, and aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3316–3321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. F. Kramer, S. Hahn, N. J. Cohen et al., “Ageing, fitness and neurocognitive function,” Nature, vol. 400, no. 6743, pp. 418–419, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. B. N. Greenwood, T. E. Foley, T. V. Le et al., “Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway,” Behavioural Brain Research, vol. 217, no. 2, pp. 354–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. D. Roberts, L. Gilpin, K. E. Parker, T. E. Childs, M. J. Will, and F. W. Booth, “Dopamine D1 receptor modulation in nucleus accumbens lowers voluntary wheel running in rats bred to run high distances,” Physiology & Behavior, vol. 105, no. 3, pp. 661–668, 2012. View at Publisher · View at Google Scholar
  40. W. F. Mathes, D. L. Nehrenberg, R. Gordon, K. Hua, T. Garland Jr., and D. Pomp, “Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity,” Behavioural Brain Research, vol. 210, no. 2, pp. 155–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Fontes-Ribeiro, E. Marques, F. C. Pereira, A. P. Silva, and T. R. A. Macedo, “May exercise prevent addiction?” Current Neuropharmacology, vol. 9, no. 1, pp. 45–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. O'Dell, B. A. Galvez, A. J. Ball, and J. F. Marshall, “Running wheel exercise ameliorates methamphetamine-induced damage to dopamine and serotonin terminals,” Synapse, vol. 66, pp. 71–80, 2012. View at Publisher · View at Google Scholar
  43. M. L. Mustroph, D. J. Stobaugh, D. S. Miller, E. K. DeYoung, and J. S. Rhodes, “Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice, depending on timing of wheel access,” European Journal of Neuroscience, vol. 34, pp. 1161–1169, 2011. View at Publisher · View at Google Scholar
  44. N. Tajiri, T. Yasuhara, T. Shingo et al., “Exercise exerts neuroprotective effects on Parkinson's disease model of rats,” Brain Research, vol. 1310, pp. 200–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Rico-Sanz, T. Rankinen, T. Rice et al., “Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE Family Study,” Physiological Genomics, vol. 16, pp. 256–260, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. P. Casey, B. D. Madery, T. B. Curry, J. H. Eisenach, B. W. Wilkins, and M. J. Joyner, “Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise,” Journal of Physiology, vol. 588, no. 2, pp. 373–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. S. Anderson, “Morphology of early developing oligodendrocytes in the ventrolateral spinal cord of the chicken,” Journal of Neurocytology, vol. 32, no. 9, pp. 1045–1053, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Dahlin, A. S. Neely, A. Larsson, L. Bäckman, and L. Nyberg, “Transfer of learning after updating training mediated by the striatum,” Science, vol. 320, no. 5882, pp. 1510–1512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Chaddock, K. I. Erickson, R. S. Prskash et al., “A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control,” " Biological Psychology, vol. 89, no. 1, pp. 260–268, 2012. View at Publisher · View at Google Scholar
  50. C. H. Hillman, S. M. Buck, J. R. Themanson, M. B. Pontifex, and D. M. Castelli, “Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children,” Developmental Psychology, vol. 45, no. 1, pp. 114–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. B. Pontifex, M. R. Scudder, M. L. Brown et al., “On the number of trials necessary for stabilization of error-related brain activity across the life span,” Psychophysiology, vol. 47, no. 4, pp. 767–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. R. Themanson, C. H. Hillman, E. McAuley et al., “Self-efficacy effects on neuroelectric and behavioral indices of action monitoring in older adults,” Neurobiology of Aging, vol. 29, no. 7, pp. 1111–1122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Stroth, S. Kubesch, K. Dieterle, M. Ruchsow, R. Heim, and M. Kiefer, “Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents,” Brain Research, vol. 1269, pp. 114–124, 2009. View at Publisher · View at Google Scholar · View at Scopus