About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2012 (2012), Article ID 948981, 14 pages
http://dx.doi.org/10.1155/2012/948981
Review Article

Potential Moderators of Physical Activity on Brain Health

1Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15260, USA
2Center for the Neural Basis of Cognition, Department of Psychology, University of Pittsburgh, Sennott Square 3417, 210 S. Bouquet Street, Pittsburgh, PA 15213, USA

Received 29 June 2012; Revised 25 October 2012; Accepted 8 November 2012

Academic Editor: Louis Bherer

Copyright © 2012 Regina L. Leckie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Alzheimer's Association, “Alzheimer's disease facts and figures,” in Alzheimer'S & Dementia 2012, Alzheimer's Association, Chicago, Ill, USA, 2012.
  2. C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. N. T. Lautenschlager, K. Cox, L. Flicker, et al., “Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1027–1037, 2008. View at Publisher · View at Google Scholar
  4. C. F. D. C. A. Prevention, “Physical activity: glossary of terms,” Division of Nutrition, National Center for Chronic Disease Prevention and Health Promotion, http://www.cdc.gov/, 2011.
  5. G. Godin and R. J. Shephard, “A simple method to assess exercise behavior in the community,” Canadian Journal of Applied Sport Sciences, vol. 10, no. 3, pp. 141–146, 1985. View at Scopus
  6. R. R. Pate, J. R. O'Neill, and F. Lobelo, “The evolving definition of ‘sedentary’,” Exercise and Sport Sciences Reviews, vol. 36, no. 4, pp. 173–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. I. Erickson, C. A. Raji, O. L. Lopez et al., “Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study,” Neurology, vol. 75, no. 16, pp. 1415–1422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Colcombe, K. I. Erickson, P. E. Scalf, et al., “Aerobic exercise training increases brain volume in aging humans,” Journals of Gerontology A, vol. 61, no. 11, pp. 1166–1170, 2006. View at Publisher · View at Google Scholar
  9. J. M. Bugg and D. Head, “Exercise moderates age-related atrophy of the medial temporal lobe,” Neurobiology of Aging, vol. 32, no. 3, pp. 506–514, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Burns, B. B. Cronk, H. S. Anderson et al., “Cardiorespiratory fitness and brain atrophy in early Alzheimer disease,” Neurology, vol. 71, no. 3, pp. 210–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. L. Marks, D. J. Madden, B. Bucur et al., “Role of aerobic fitness and aging on cerebral white matter integrity,” Annals of the New York Academy of Sciences, vol. 1097, pp. 171–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. W. Voss, S. Heo, R. S. Prakash, et al., “The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention,” Human Brain Mapping. In press. View at Publisher · View at Google Scholar
  14. S. J. Colcombe, A. F. Kramer, E. McAuley, K. I. Erickson, and P. Scalf, “Neurocognitive aging and cardiovascular fitness: recent findings and future directions,” Journal of Molecular Neuroscience, vol. 24, no. 1, pp. 9–14, 2004. View at Scopus
  15. J. C. Smith, K. A. Nielson, J. L. Woodard et al., “Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders,” NeuroImage, vol. 54, no. 1, pp. 635–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. W. Voss, K. I. Erickson, R. S. Prakash et al., “Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition?” Neuropsychologia, vol. 48, no. 5, pp. 1394–1406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Burdette, P. Laurienti, M. A. Espeland, et al., “Using network science to evaluate exercise-associated brain changes in older adults,” Frontiers in Aging Neuroscience, vol. 2, p. 23, 2010. View at Publisher · View at Google Scholar
  18. P. J. Smith, J. A. Blumenthal, B. M. Hoffman et al., “Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials,” Psychosomatic Medicine, vol. 72, no. 3, pp. 239–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. I. Erickson, M. Voss, R. S. Prakash, et al., “Exercise training increases size of hippocampus and improves memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 3017–3022, 2011. View at Publisher · View at Google Scholar
  20. J. L. Etnier, P. M. Nowell, D. M. Landers, and B. A. Sibley, “A meta-regression to examine the relationship between aerobic fitness and cognitive performance,” Brain Research Reviews, vol. 52, no. 1, pp. 119–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. Schuit, E. J. M. Feskens, L. J. Launer, and D. Kromhout, “Physical activity and cognitive decline, the role of the apolipoprotein e4 allele,” Medicine and Science in Sports and Exercise, vol. 33, no. 5, pp. 772–777, 2001. View at Scopus
  22. S. A. Neeper, F. Gómez-Pinilla, J. Choi, and C. W. Cotman, “Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain,” Brain Research, vol. 726, no. 1-2, pp. 49–56, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Stroth, R. K. Reinhardt, J. Thöne et al., “Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults,” Neurobiology of Learning and Memory, vol. 94, no. 3, pp. 364–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Chytrova, Z. Ying, and F. Gomez-Pinilla, “Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems,” Brain Research C, vol. 1341, pp. 32–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Honea, G. P. Thomas, A. Harsha et al., “Cardiorespiratory fitness and preserved medial temporal lobe volume in alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 23, no. 3, pp. 188–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Y. Liang, M. A. Mintun, A. M. Fagan et al., “Exercise and Alzheimer's disease biomarkers in cognitively normal older adults,” Annals of Neurology, vol. 68, no. 3, pp. 311–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. E. Nichol, W. W. Poon, A. I. Parachikova, D. H. Cribbs, C. G. Glabe, and C. W. Cotman, “Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid,” Journal of Neuroinflammation, vol. 5, p. 13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Parachikova, K. E. Nichol, and C. W. Cotman, “Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition,” Neurobiology of Disease, vol. 30, no. 1, pp. 121–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Podewils, E. Guallar, L. H. Kuller et al., “Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study,” American Journal of Epidemiology, vol. 161, no. 7, pp. 639–651, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Reinvang, I. L. Winjevoll, H. Rootwelt, and T. Espeseth, “Working memory deficits in healthy APOE epsilon 4 carriers,” Neuropsychologia, vol. 48, no. 2, pp. 566–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. I. Erickson, R. S. Prakash, M. W. Voss et al., “Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume,” Journal of Neuroscience, vol. 30, no. 15, pp. 5368–5375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Mu, W. P. Li, Z. B. Yao, and X. F. Zhou, “Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats,” Brain Research, vol. 835, no. 2, pp. 259–265, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Stranahan, K. Lee, B. Martin et al., “Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice,” Hippocampus, vol. 19, no. 10, pp. 951–961, 2009.
  34. C. M. de Frias, K. Annerbrink, L. Westberg, E. Eriksson, R. Adolfsson, and L. G. Nilsson, “Catechol-O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults,” Journal of Cognitive Neuroscience, vol. 17, no. 7, pp. 1018–1025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. A. Wishart, R. M. Roth, A. J. Saykin et al., “COMT Val158met genotype and individual differences in executive function in healthy adults,” Journal of the International Neuropsychological Society, vol. 17, no. 1, pp. 174–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. F. Muldoon, C. M. Ryan, L. Sheu, J. K. Yao, S. M. Conklin, and S. B. Manuck, “Serum phospholipid docosahexaenonic acid is associated with cognitive functioning during middle adulthood,” Journal of Nutrition, vol. 140, no. 4, pp. 848–853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Oksman, H. Iivonen, E. Hogyes et al., “Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice,” Neurobiology of Disease, vol. 23, no. 3, pp. 563–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. B. M. van Gelder, M. Tijhuis, S. Kalmijn, and D. Kromhout, “Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study,” American Journal of Clinical Nutrition, vol. 85, no. 4, pp. 1142–1147, 2007. View at Scopus
  39. S. J. Colcombe, K. Erickson , N. Raz, et al., “Aerobic fitness reduces brain tissue loss in aging humans,” Journals of Gerontology A, vol. 58, no. 2, pp. 176–180, 2003. View at Publisher · View at Google Scholar
  40. K. I. Erickson, R. S. Prakash, M. W. Voss et al., “Aerobic fitness is associated with hippocampal volume in elderly humans,” Hippocampus, vol. 19, no. 10, pp. 1030–1039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. M. Weinstein, M. Voss, K. Prakash, et al., “The association between aerobic fitness and executive function is mediated by prefrontal cortex volume,” Brain, Behavior, and Immunity, vol. 26, no. 5, pp. 811–819, 2012. View at Publisher · View at Google Scholar
  42. K. B. Walhovd, A. M. Fjell, I. Reinvang et al., “Effects of age on volumes of cortex, white matter and subcortical structures,” Neurobiology of Aging, vol. 26, no. 9, pp. 1261–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. R. A. Honea, E. Vidoni, A. Harsha, and J. M. Burns, “Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study,” Journal of Alzheimer's Disease, vol. 18, no. 3, pp. 553–564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. N. Szabo, E. Mcauley, K. Erickson, et al., “Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults,” Neuropsychology, vol. 25, no. 5, pp. 545–553, 2011. View at Publisher · View at Google Scholar
  45. R. I. Scahill, C. Frost, R. Jenkins, J. L. Whitwell, M. N. Rossor, and N. C. Fox, “A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging,” Archives of Neurology, vol. 60, no. 7, pp. 989–994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. T. Du, N. Schuff, X. P. Zhu et al., “Atrophy rates of entorhinal cortex in AD and normal aging,” Neurology, vol. 60, no. 3, pp. 481–486, 2003. View at Scopus
  47. N. Raz, U. Lindenberger, K. M. Rodrigue et al., “Regional brain changes in aging healthy adults: general trends, individual differences and modifiers,” Cerebral Cortex, vol. 15, no. 11, pp. 1676–1689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Pfefferbaum, D. H. Mathalon, E. V. Sullivan, J. M. Rawles, R. B. Zipursky, and K. O. Lim, “A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood,” Archives of Neurology, vol. 51, no. 9, pp. 874–887, 1994. View at Scopus
  49. C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak, “A voxel-based morphometric study of ageing in 465 normal adult human brains,” NeuroImage, vol. 14, no. 1, pp. 21–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. J. T. Lehmbeck, S. Brassen, W. Weber-Fahr, and D. F. Braus, “Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes,” NeuroReport, vol. 17, no. 5, pp. 467–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. R. Jack Jr, R. C. Petersen, Y. Xu et al., “Rates of hippocampal atrophy correlate with change in clinical status in aging and AD,” Neurology, vol. 55, no. 4, pp. 484–489, 2000. View at Scopus
  52. J. Golomb, M. J. De Leon, A. Kluger, A. E. George, C. Tarshish, and S. H. Ferris, “Hippocampal atrophy in normal aging: an association with recent memory impairment,” Archives of Neurology, vol. 50, no. 9, pp. 967–973, 1993. View at Scopus
  53. R. E. Clark, N. J. Broadbent, and L. R. Squire, “Hippocampus and remote spatial memory in rats,” Hippocampus, vol. 15, no. 2, pp. 260–272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. P. F. Chapman, G. L. White, M. W. Jones et al., “Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice,” Nature Neuroscience, vol. 2, no. 3, pp. 271–276, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Guo, W. Fu, B. L. Sopher et al., “Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice,” Nature Medicine, vol. 5, no. 1, pp. 101–106, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. H. van Praag, G. Kempermann, and F. H. Gage, “Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus,” Nature Neuroscience, vol. 2, no. 3, pp. 266–270, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. H. van Praag, T. Shubert, C. Zhao, and F. H. Gage, “Exercise enhances learning and hippocampal neurogenesis in aged mice,” Journal of Neuroscience, vol. 25, no. 38, pp. 8680–8685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Deng, J. B. Aimone, and F. H. Gage, “New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?” Nature Reviews Neuroscience, vol. 11, no. 5, pp. 339–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. W. Cotman, N. C. Berchtold, and L. A. Christie, “Exercise builds brain health: key roles of growth factor cascades and inflammation,” Trends in Neurosciences, vol. 30, no. 9, pp. 464–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. F. Kramer and K. I. Erickson, “Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function,” Trends in Cognitive Sciences, vol. 11, no. 8, pp. 342–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. M. Hallman, E. Boerwinkle, N. Saha et al., “The apolipoprotein E polymorphism: a comparison of allele frequencies and effects in nine populations,” American Journal of Human Genetics, vol. 49, no. 2, pp. 338–349, 1991. View at Scopus
  62. J. C. S. Breitner, B. W. Wyse, J. C. Anthony et al., “APOE-ε4 count predicts age when prevalence of AD increases, then declines: the cache county study,” Neurology, vol. 53, no. 2, pp. 321–331, 1999. View at Scopus
  63. A. L. Fitzpatrick, L. H. Kuller, D. G. Ives et al., “Incidence and prevalence of dementia in the cardiovascular health study,” Journal of the American Geriatrics Society, vol. 52, no. 2, pp. 195–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993. View at Scopus
  65. T. Grimmer, S. Tholen, B. H. Yousefi et al., “Progression of cerebral amyloid load is associated with the apolipoprotein E epsilon4 genotype in Alzheimer's disease,” Biological Psychiatry, vol. 68, no. 10, pp. 879–884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. D. M. Holtzman, K. R. Bales, S. Wu et al., “Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer's disease,” Journal of Clinical Investigation, vol. 103, no. 6, pp. R15–R21, 1999. View at Scopus
  67. Z. S. Nagy, M. M. Esiri, K. A. Jobst et al., “Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer's disease,” Neuroscience, vol. 69, no. 3, pp. 757–761, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Head, J. M. Bugg, A. M. Goate, et al., “Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition,” Archives of Neurology, vol. 69, no. 5, pp. 636–643, 2012. View at Publisher · View at Google Scholar
  69. C. M. Yuede, S. D. Zimmerman, H. Dong et al., “Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 35, no. 3, pp. 426–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. N. P. E. Kadoglou, N. Kostomitsopoulos, A. Kapelouzou et al., “Effects of exercise training on the severity and composition of atherosclerotic plaque in apoE-deficient mice,” Journal of Vascular Research, vol. 48, no. 4, pp. 347–356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. S. P. Deeny, D. Poeppel, J. B. Zimmerman et al., “Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers,” Biological Psychology, vol. 78, no. 2, pp. 179–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. T. E. Goldberg and D. R. Weinberger, “Genes and the parsing of cognitive processes,” Trends in Cognitive Sciences, vol. 8, no. 7, pp. 325–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. M. F. Egan, M. Kojima, J. H. Callicott et al., “The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function,” Cell, vol. 112, no. 2, pp. 257–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. K. G. Bath and F. S. Lee, “Variant BDNF (Val66Met) impact on brain structure and function,” Cognitive, Affective and Behavioral Neuroscience, vol. 6, no. 1, pp. 79–85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. R. Hariri, T. E. Goldberg, V. S. Mattay et al., “Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance,” Journal of Neuroscience, vol. 23, no. 17, pp. 6690–6694, 2003. View at Scopus
  76. P. R. Szeszko, R. Lipsky, C. Mentschel et al., “Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation,” Molecular Psychiatry, vol. 10, no. 7, pp. 631–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Leßmann and T. Brigadski, “Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update,” Neuroscience Research, vol. 65, no. 1, pp. 11–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. G. M. Schratt, E. A. Nigh, W. G. Chen, L. Hu, and M. E. Greenberg, “BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development,” Journal of Neuroscience, vol. 24, no. 33, pp. 7366–7377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Righi, E. Tongiorgi, and A. Cattaneo, “Brain-derived neurotrophic factor (BDNF) induces dendritic targeting of BDNF and tyrosine kinase B mRNAS in hippocampal neurons through a phosphatidylinositol-3 kinase-dependent pathway,” Journal of Neuroscience, vol. 20, no. 9, pp. 3165–3174, 2000. View at Scopus
  80. L. Minichiello, “TrkB signalling pathways in LTP and learning,” Nature Reviews Neuroscience, vol. 10, no. 12, pp. 850–860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Neves, S. F. Cooke, and T. V. P. Bliss, “Synaptic plasticity, memory and the hippocampus: a neural network approach to causality,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 65–75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Yamada and T. Nabeshima, “Brain-derived neurotrophic factor/TrkB signaling in memory processes,” Journal Pharmacological Sciences, vol. 91, no. 4, pp. 267–270, 2003. View at Scopus
  83. S. A. Neeper, F. Gomez-Pinilla, J. Choi, and C. Cotman, “Exercise and brain neurotrophins,” Nature, vol. 373, no. 6510, p. 109, 1995. View at Scopus
  84. C. W. Cotman and C. Engesser-Cesar, “Exercise enhances and protects brain function,” Exercise and Sport Sciences Reviews, vol. 30, no. 2, pp. 75–79, 2002. View at Scopus
  85. K. Knaepen, M. Goekint, E. M. Heyman, and R. Meeusen, “Neuroplasticity exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects,” Sports Medicine, vol. 40, no. 9, pp. 765–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Karege, M. Schwald, and M. Cisse, “Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets,” Neuroscience Letters, vol. 328, no. 3, pp. 261–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. R. S. Duman and L. M. Monteggia, “A neurotrophic model for stress-related mood disorders,” Biological Psychiatry, vol. 59, no. 12, pp. 1116–1127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Sen, R. Duman, and G. Sanacora, “Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications,” Biological Psychiatry, vol. 64, no. 6, pp. 527–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. F. Karege, G. Vaudan, M. Schwald, N. Perroud, and R. La Harpe, “Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs,” Molecular Brain Research, vol. 136, no. 1-2, pp. 29–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Gunstad, A. Benitez, J. Smith et al., “Serum brain-derived neurotrophic factor is associated with cognitive function in healthy older adults,” Journal of Geriatric Psychiatry and Neurology, vol. 21, no. 3, pp. 166–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. J. F. Yarrow, L. J. White, S. C. McCoy, and S. E. Borst, “Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF),” Neuroscience Letters, vol. 479, no. 2, pp. 161–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Meyer-Lindenberg, T. Nichols, J. H. Callicott et al., “Impact of complex genetic variation in COMT on human brain function,” Molecular Psychiatry, vol. 11, no. 9, pp. 867–877, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Savitz, M. Solms, and R. Ramesar, “The molecular genetics of cognition: dopamine, COMT and BDNF,” Genes, Brain and Behavior, vol. 5, no. 4, pp. 311–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. T. W. Robbins and A. F. T. Arnsten, “The neuropsychopharmacology of fronto-executive function: monoaminergic modulation,” Annual Review of Neuroscience, vol. 32, pp. 267–287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. J. H. Barnett, L. Scoriels, and M. R. Munafò, “Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism,” Biological Psychiatry, vol. 64, no. 2, pp. 137–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. P. G. MacRae, W. W. Spirduso, and T. J. Walters, “Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats,” Psychopharmacology, vol. 92, no. 2, pp. 236–240, 1987. View at Scopus
  97. A. M. Knab, R. S. Bowen, A. T. Hamilton, A. A. Gulledge, and J. T. Lightfoot, “Altered dopaminergic profiles: implications for the regulation of voluntary physical activity,” Behavioural Brain Research, vol. 204, no. 1, pp. 147–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. B. E. Fisher, G. M. Petzinger, K. Nixon et al., “Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia,” Journal of Neuroscience Research, vol. 77, no. 3, pp. 378–390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. G. M. Petzinger, J. P. Walsh, G. Akopian et al., “Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury,” Journal of Neuroscience, vol. 27, no. 20, pp. 5291–5300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. C. H. S. Ruxton, S. C. Reed, M. J. A. Simpson, and K. J. Millington, “The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence,” Journal of Human Nutrition and Dietetics, vol. 17, no. 5, pp. 449–459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. S. C. Dyall and A. T. Michael-Titus, “Neurological benefits of omega-3 fatty acids,” NeuroMolecular Medicine, vol. 10, no. 4, pp. 219–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Gómez-Pinilla and C. Feng, “Molecular mechanisms for the ability of exercise supporting cognitive abilities and counteracting neurological disorders,” Functional Neuroimaging in Exercise and Sport Sciences, pp. 25–43, 2012.
  103. S. Kalmijn, M. P. J. Van Boxtel, M. Ocké, W. M. M. Verschuren, D. Kromhout, and L. J. Launer, “Dietary intake of fatty acids and fish in relation to cognitive performance at middle age,” Neurology, vol. 62, no. 2, pp. 275–280, 2004. View at Scopus
  104. C. Dullemeijer, J. Durga, I. A. Brouwer et al., “n-3 Fatty acid proportions in plasma and cognitive performance in older adults,” American Journal of Clinical Nutrition, vol. 86, no. 5, pp. 1479–1485, 2007. View at Scopus
  105. P. M. Kidd, “Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids,” Alternative Medicine Review, vol. 12, no. 3, pp. 207–227, 2007. View at Scopus
  106. A. Wu, Z. Ying, and F. Gomez-Pinilla, “Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition,” Neuroscience, vol. 155, no. 3, pp. 751–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Delion, S. Chalon, D. Guilloteau, J. C. Besnard, and G. Durand, “α-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex,” Journal of Neurochemistry, vol. 66, no. 4, pp. 1582–1591, 1996. View at Scopus
  108. A. J. Sinclair, D. Begg, M. Mathai, and R. S. Weisinger, “Omega 3 fatty acids and the brain: review of studies in depression,” Asia Pacific Journal of Clinical Nutrition, vol. 16, supplement 1, pp. 391–397, 2007. View at Scopus
  109. N. Shioda, Y. Yamamoto, Y. Owada, and K. Fukunaga, “Dopamine D2 receptor as a novel target molecule for heart-type fatty acid binding protein,” Japanese Journal of Neuropsychopharmacology, vol. 31, no. 3, pp. 125–130, 2011. View at Scopus
  110. P. F. Davis, M. K. Ozias, S. E. Carlson et al., “Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status,” Nutritional Neuroscience, vol. 13, no. 4, pp. 161–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Bousquet, M. Saint-Pierre, C. Julien, N. Salem, F. Cicchetti, and F. Calon, “Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease,” FASEB Journal, vol. 22, no. 4, pp. 1213–1225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Akter, D. A. Gallo, S. A. Martin, et al., “A review of the possible role of the essential fatty acids and fish oils in the aetiology, prevention or pharmacotherapy of schizophrenia,” Clinical Pharmacology & Therapeutics, vol. 37, no. 2, pp. 132–139, 2012. View at Publisher · View at Google Scholar
  113. G. M. Cole and S. A. Frautschy, “DHA may prevent age-related dementia,” Journal of Nutrition, vol. 140, no. 4, pp. 869–874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. A. M. Issa, W. A. Mojica, S. C. Morton et al., “The efficacy of omega-3 fatty acids on cognitive function in aging and dementia: a systematic review,” Dementia and Geriatric Cognitive Disorders, vol. 21, no. 2, pp. 88–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Fotuhi, P. Mohassel, and K. Yaffe, “Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association,” Nature Clinical Practice Neurology, vol. 5, no. 3, pp. 140–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. G. A. Jicha and W. R. Markesbery, “Omega-3 fatty acids: potential role in the management of early Alzheimer's disease,” Clinical Interventions in Aging, vol. 5, no. 1, pp. 45–61, 2010. View at Scopus