About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2013 (2013), Article ID 198471, 10 pages
http://dx.doi.org/10.1155/2013/198471
Research Article

White Matter Lesion Assessment in Patients with Cognitive Impairment and Healthy Controls: Reliability Comparisons between Visual Rating, a Manual, and an Automatic Volumetrical MRI Method—The Gothenburg MCI Study

1Department of Neuroscience and Physiology, Institute of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
2Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, 40530 Gothenburg, Sweden

Received 18 September 2012; Revised 13 November 2012; Accepted 13 November 2012

Academic Editor: F. Richard Ferraro

Copyright © 2013 Erik Olsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Schmahmann, E. E. Smith, F. S. Eichler, and C. M. Filley, “Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates,” Annals of the New York Academy of Sciences, vol. 1142, pp. 266–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Inzitari, G. Pracucci, A. Poggesi et al., “Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort,” BMJ, vol. 339, article b2477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Debette and H. S. Markus, “The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis,” BMJ, vol. 341, article c3666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bombois, S. Debette, A. Bruandet et al., “Vascular subcortical hyperintensities predict conversion to vascular and mixed dementia in MCI patients,” Stroke, vol. 39, no. 7, pp. 2046–2051, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. B. Wakefield, N. Moscufo, C. R. Guttmann et al., “White matter hyperintensities predict functional decline in voiding, mobility, and cognition in older adults,” Journal of the American Geriatrics Society, vol. 58, no. 2, pp. 275–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhang, N. Schuff, C. Ching, et al., “Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer's disease and frontotemporal dementia,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 546871, 11 pages, 2011. View at Publisher · View at Google Scholar
  7. W. Wen, P. S. Sachdev, J. J. Li, X. Chen, and K. J. Anstey, “White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44-48,” Human Brain Mapping, vol. 30, no. 4, pp. 1155–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Wen and P. Sachdev, “The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals,” NeuroImage, vol. 22, no. 1, pp. 144–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. M. Bailey, “Fast Fluid Attenuated Inversion Recovery (FLAIR) imaging and associated artefacts in Magnetic Resonance Imaging (MRI),” Radiography, vol. 13, no. 4, pp. 283–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Erkinjuntti, D. Inzitari, L. Pantoni et al., “Research criteria for subcortical vascular dementia in clinical trials,” Journal of Neural Transmission, Supplement, no. 59, pp. 23–30, 2000. View at Scopus
  11. F. Q. Gao, R. H. Swartz, and P. Scheltens, “Complexity of MRI white matter hyperintensity assessments in relation to cognition in aging and dementia from the Sunnybrook Dementia Study,” Journal of Alzheimer's Disease, vol. 26, supplement 3, pp. 379–388, 2011.
  12. P. Kapeller, R. Barber, R. J. Vermeulen et al., “Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements,” Stroke, vol. 34, no. 2, pp. 441–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Fazekas, J. B. Chawluk, and A. Alavi, “MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging,” American Journal of Roentgenology, vol. 149, no. 2, pp. 351–356, 1987. View at Scopus
  14. D. Inzitari, M. Simoni, G. Pracucci et al., “Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study,” Archives of Internal Medicine, vol. 167, no. 1, pp. 81–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. C. W. Van Straaten, F. Fazekas, E. Rostrup et al., “Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study,” Stroke, vol. 37, no. 3, pp. 836–840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Gouw, W. M. Van Der Flier, E. C. W. Van Straaten et al., “Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study,” Journal of Neurology, vol. 253, no. 9, pp. 1189–1196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. D. Garrett, R. A. Cohen, R. H. Paul et al., “Computer-mediated measurement and subjective ratings of white matter hyperintensities in vascular dementia: relationships to neuropsychological performance,” Clinical Neuropsychologist, vol. 18, no. 1, pp. 50–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Gurol, M. C. Irizarry, E. E. Smith et al., “Plasma β-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy,” Neurology, vol. 66, no. 1, pp. 23–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Klöppel, A. Abdulkadir, S. Hadjidemetriou et al., “A comparison of different automated methods for the detection of white matter lesions in MRI data,” NeuroImage, vol. 57, no. 2, pp. 416–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Mortazavi, A. Z. Kouzani, and H. Soltanian-Zadeh, “Segmentation of multiple sclerosis lesions in MR images: a review,” Neuroradiology, vol. 54, no. 4, pp. 299–299-320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. D. Smart, M. J. Firbank, and J. T. O'Brien, “Validation of automated white matter hyperintensity segmentation,” Journal of Aging Research, vol. 2011, Article ID 391783, 5 pages, 2011. View at Publisher · View at Google Scholar
  22. B. Fischl, D. H. Salat, E. Busa et al., “Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain,” Neuron, vol. 33, no. 3, pp. 341–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Fischl, D. H. Salat, A. J. W. Van Der Kouwe et al., “Sequence-independent segmentation of magnetic resonance images,” NeuroImage, vol. 23, supplement 1, pp. S69–S84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Klauschen, A. Goldman, V. Barra, A. Meyer-Lindenberg, and A. Lundervold, “Evaluation of automated brain MR image segmentation and volumetry methods,” Human Brain Mapping, vol. 30, no. 4, pp. 1310–1327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. E. Smith, D. H. Salat, J. Jeng et al., “Correlations between MRI white matter lesion location and executive function and episodic memory,” Neurology, vol. 76, no. 17, pp. 1492–1499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Fennema-Notestine, D. J. Hagler Jr., L. K. McEvoy et al., “Structural MRI biomarkers for preclinical and mild Alzheimer's disease,” Human Brain Mapping, vol. 30, no. 10, pp. 3238–3253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Eckerström, E. Olsson, M. Borga et al., “Small baseline volume of left hippocampus is associated with subsequent conversion of MCI into dementia: the Göteborg MCI study,” Journal of the Neurological Sciences, vol. 272, no. 1-2, pp. 48–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Reisberg, S. H. Ferris, M. J. De Leon, and T. Crook, “Global Deterioration Scale (GDS),” Psychopharmacology Bulletin, vol. 24, no. 4, pp. 661–623, 1988. View at Scopus
  29. J. Kottner, L. Audigé, S. Brorson et al., “Guidelines for reporting reliability and agreement studies (GRRAS) were proposed,” Journal of Clinical Epidemiology, vol. 64, no. 1, pp. 96–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Fazekas, R. Kleinert, H. Olfenbacher et al., “Pathologic correlates of incidental MRI white matter signal hyperintensities,” Neurology, vol. 43, no. 9, pp. 1683–1689, 1993. View at Scopus
  31. C. M. Holland, E. E. Smith, I. Csapo et al., “Spatial distribution of white-matter hyperintensities in Alzheimer disease, cerebral amyloid angiopathy, and healthy aging,” Stroke, vol. 39, no. 4, pp. 1127–1133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Wardlaw, K. J. Ferguson, and C. Graham, “White matter hyperintensities and rating scales—observer reliability varies with lesion load,” Journal of Neurology, vol. 251, no. 5, pp. 584–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Mäntylä, T. Erkinjuntti, O. Salonen et al., “Variable agreement between visual rating scales for white matter hyperintensities on MRI,” Stroke, vol. 28, no. 8, pp. 1614–1623, 1997. View at Scopus
  34. A. Simmons, P. S. Tofts, G. J. Barker, and S. R. Arridge, “Sources of intensity nonuniformity in spin echo images at 1.5 T,” Magnetic Resonance in Medicine, vol. 32, no. 1, pp. 121–128, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. G. Wicks, G. J. Barker, and P. S. Tofts, “Correction of intensity nonuniformity in MR images of any orientation,” Magnetic Resonance Imaging, vol. 11, no. 2, pp. 183–196, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Schmidt, H. Schmidt, J. Haybaeck et al., “Heterogeneity in age-related white matter changes,” Acta Neuropathologica, vol. 122, no. 2, pp. 171–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. DeCarli, E. Fletcher, V. Ramey, D. Harvey, and W. J. Jagust, “Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden,” Stroke, vol. 36, no. 1, pp. 50–55, 2005. View at Publisher · View at Google Scholar · View at Scopus