About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2013 (2013), Article ID 538979, 11 pages
http://dx.doi.org/10.1155/2013/538979
Research Article

Letrozole Potentiates Mitochondrial and Dendritic Spine Impairments Induced by β Amyloid

Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6

Received 5 March 2013; Accepted 18 June 2013

Academic Editor: Holly M. Brown-Borg

Copyright © 2013 P. K.-Y. Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. F. Semiglazov, V. V. Semiglazov, G. A. Dashyan et al., “Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer,” Cancer, vol. 110, no. 2, pp. 244–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. V. A. Choate and J. A. Resko, “Paradoxical effect of an aromatase inhibitor, CGS 20267, on aromatase activity in guinea pig brain,” Journal of Steroid Biochemistry and Molecular Biology, vol. 58, no. 4, pp. 411–415, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. Haynes, M. Dowsett, W. R. Miller, J. M. Dixon, and A. S. Bhatnagar, “The pharmacology of letrozole,” Journal of Steroid Biochemistry and Molecular Biology, vol. 87, no. 1, pp. 35–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Shilling, V. Jenkins, L. Fallowfield, and T. Howell, “The effects of hormone therapy on cognition in breast cancer,” Journal of Steroid Biochemistry and Molecular Biology, vol. 86, no. 3-5, pp. 405–412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Penzes, M. E. Cahill, K. A. Jones, J.-E. Vanleeuwen, and K. M. Woolfrey, “Dendritic spine pathology in neuropsychiatric disorders,” Nature Neuroscience, vol. 14, no. 3, pp. 285–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. V. Sofroniew and H. V. Vinters, “Astrocytes: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 7–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Prange-Kiel, L. Fester, L. Zhou, H. Jarry, and G. M. Rune, “Estrus cyclicity of spinogenesis: underlying mechanisms,” Journal of Neural Transmission, vol. 116, no. 11, pp. 1417–1425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Vierk, G. Glassmeier, L. Zhou, et al., “Aromatase inhibition abolishes LTP generation in female but not in male mice,” The Journal of Neuroscience, vol. 32, no. 24, pp. 8116–8126, 2012. View at Publisher · View at Google Scholar
  9. P. Polo-Kantola, R. Portin, O. Polo, H. Helenius, K. Irjala, and R. Erkkola, “The effect of short-term estrogen replacement therapy on cognition: a randomized, double-blind, cross-over trial in postmenopausal women,” Obstetrics and Gynecology, vol. 91, no. 3, pp. 459–466, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Hogervorst, J. Williams, M. Budge, W. Riedel, and J. Jolles, “The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis,” Neuroscience, vol. 101, no. 3, pp. 485–512, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. O. T. Wolf, B. M. Kudielka, D. H. Hellhammer, S. Törber, B. S. McEwen, and C. Kirschbaum, “Two weeks of transdermal estradiol treatment in postmenopausal elderly women and its effect on memory and mood: verbal memory changes are associated with the treatment induced estradiol levels,” Psychoneuroendocrinology, vol. 24, no. 7, pp. 727–741, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Duka, R. Tasker, and J. F. McGowan, “The effects of 3-week estrogen hormone replacement on cognition in elderly healthy females,” Psychopharmacology, vol. 149, no. 2, pp. 129–139, 2000. View at Scopus
  13. A. Kugaya, C. N. Epperson, S. Zoghbi et al., “Increase in prefrontal cortex serotonin2A receptors following estrogen treatment in postmenopausal women,” American Journal of Psychiatry, vol. 160, no. 8, pp. 1522–1524, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. V. W. Henderson, “Action of estrogens in the aging brain: dementia and cognitive aging,” Biochimica et Biophysica Acta, vol. 1800, no. 10, pp. 1077–1083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Caruso, A. M. Barron, M. A. Brown, et al., “Age-related changes in neuroactive steroid levels in 3xTg-AD mice,” Neurobiol Aging, vol. 34, pp. 1080–1089, 2013.
  16. C. R. Overk, P.-Y. Lu, Y.-T. Wang et al., “Effects of aromatase inhibition versus gonadectomy on hippocampal complex amyloid pathology in triple transgenic mice,” Neurobiology of Disease, vol. 45, no. 1, pp. 479–487, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Carroll, E. R. Rosario, L. Chang et al., “Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice,” Journal of Neuroscience, vol. 27, no. 48, pp. 13357–13365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Wei, L. N. Nguyen, H. W. Kessels, H. Hagiwara, S. Sisodia, and R. Malinow, “Amyloid beta from axons and dendrites reduces local spine number and plasticity,” Nature Neuroscience, vol. 13, no. 2, pp. 190–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Boridy, H. Takahashi, K. Akiyoshi, and D. Maysinger, “The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity,” Biomaterials, vol. 30, no. 29, pp. 5583–5591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Hsieh, J. Boehm, C. Sato et al., “AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss,” Neuron, vol. 52, no. 5, pp. 831–843, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. V. De Paola, S. Arber, and P. Caroni, “AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks,” Nature Neuroscience, vol. 6, no. 5, pp. 491–500, 2003. View at Scopus
  22. B. H. Gähwiler, M. Capogna, D. Debanne, R. A. McKinney, and S. M. Thompson, “Organotypic slice cultures: a technique has come of age,” Trends in Neurosciences, vol. 20, no. 10, pp. 471–477, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. McKinney, M. Capogna, R. Dürr, B. H. Gähwiler, and S. M. Thompson, “Miniature synaptic events maintain dendritic spines via AMPA receptor activation,” Nature Neuroscience, vol. 2, no. 1, pp. 44–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Mendez, L. M. Garcia-Segura, and D. Muller, “Estradiol promotes spine growth and synapse formation without affecting pre-established networks,” Hippocampus, vol. 21, no. 12, pp. 1263–1267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Grimm, Y. A. Lim, A. G. Mensah-Nyagan, J. Gotz, and A. Eckert, “Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship,” Molecular Neurobiology, vol. 46, pp. 151–160, 2012.
  26. J. W. Simpkins, K. D. Yi, S.-H. Yang, and J. A. Dykens, “Mitochondrial mechanisms of estrogen neuroprotection,” Biochimica et Biophysica Acta, vol. 1800, no. 10, pp. 1113–1120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nature Neuroscience, vol. 4, no. 11, pp. 1086–1092, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Mateos, A. Lüthi, N. Savic et al., “Synaptic modifications at the CA3-CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices,” Journal of Physiology, vol. 581, no. 1, pp. 129–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Fester, L. Zhou, C. Voets et al., “The opposing roles of estradiol on synaptic protein expression in hippocampal cultures,” Psychoneuroendocrinology, vol. 34, supplement 1, pp. S123–S129, 2009. View at Publisher · View at Google Scholar
  30. A. Vlachos, E. Korkotian, E. Schonfeld, E. Copanaki, T. Deller, and M. Segal, “Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons,” Journal of Neuroscience, vol. 29, no. 4, pp. 1017–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. C. Janicki and N. Schupf, “Hormonal influences on cognition and risk for Alzheimer's disease,” Current Neurology and Neuroscience Reports, vol. 10, no. 5, pp. 359–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Prat, M. Behrendt, E. Marcinkiewicz, et al., “A novel mouse model of Alzheimer's disease with chronic estrogen deficiency leads to glial cell activation and hypertrophy,” Journal of Aging Research, vol. 2011, Article ID 251517, 12 pages, 2011. View at Publisher · View at Google Scholar
  33. J. L. Furman, D. M. Sama, J. C. Gant, et al., “Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease,” The Journal of Neuroscience, vol. 32, pp. 16129–16140, 2012.
  34. F. Liu, M. Day, L. C. Muñiz et al., “Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory,” Nature Neuroscience, vol. 11, no. 3, pp. 334–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Du, L. Guo, S. Yan, A. A. Sosunov, G. M. McKhann, and S. S. Yan, “Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18670–18675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Baloyannis, “Mitochondria are related to synaptic pathology in Alzheimer's disease,” International Journal of Alzheimer's Disease, Article ID 305395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Y. Sung, O. Engmann, M. A. Teylan, A. C. Nairn, P. Greengard, and Y. Kim, “WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 8, pp. 3112–3116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. J. Youle and A. M. van der Bliek, “Mitochondrial fission, fusion, and stress,” Science, vol. 337, pp. 1062–1065, 2012.
  39. Y. Rui, J. Gu, K. Yu, H. C. Hartzell, and J. Q. Zheng, “Inhibition of AMPA receptor trafficking at hippocampal synapses by -amyloid oligomers: the mitochondrial contribution,” Molecular Brain, vol. 3, no. 1, article 10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Zhu, G. Perry, M. A. Smith, and X. Wang, “Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 33, pp. S253–S262, 2013.
  41. E. Trushina, E. Nemutlu, S. Zhang et al., “Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial alzheimer's disease,” PLoS ONE, vol. 7, no. 2, Article ID e32737, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Westermann, “Nitric oxide links mitochondrial fission to alzheimer's disease,” Science Signaling, vol. 2, no. 69, p. pe29, 2009. View at Publisher · View at Google Scholar · View at Scopus