About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2013 (2013), Article ID 657508, 8 pages
http://dx.doi.org/10.1155/2013/657508
Review Article

A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults

1PERFORM Centre, Concordia University, Montreal, QC, Canada
2Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
3Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
4Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
5Brain Research Centre, University of British Columbia, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada

Received 8 May 2013; Accepted 31 July 2013

Academic Editor: Karl Rosengren

Copyright © 2013 Louis Bherer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Y. Wang, W. L. Haskell, S. W. Farrell et al., “Cardiorespiratory fitness levels among us adults 20–49 years of age: findings from the 1999–2004 national health and nutrition examination survey,” The American Journal of Epidemiology, vol. 171, no. 4, pp. 426–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” The Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Hertzog, A. F. Kramer, R. S. Wilson, and U. Lindenberger, “Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced?” Psychological Science in the Public Interest, vol. 9, no. 1, pp. 1–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. F. Kramer, L. Bherer, S. J. Colcombe, W. Dong, and W. T. Greenough, “Environmental influences on cognitive and brain plasticity during aging,” Journals of Gerontology A, vol. 59, no. 9, pp. 940–957, 2004. View at Scopus
  5. F. W. Booth, S. E. Gordon, C. J. Carlson, and M. T. Hamilton, “Waging war on modern chronic diseases: primary prevention through exercise biology,” Journal of Applied Physiology, vol. 88, no. 2, pp. 774–787, 2000. View at Scopus
  6. J. Myers, M. Prakash, V. Froelicher, D. Do, S. Partington, and J. E. Atwood, “Exercise capacity and mortality among men referred for exercise testing,” The New England Journal of Medicine, vol. 346, no. 11, pp. 793–801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. E. B. Larson, L. Wang, J. D. Bowen et al., “Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older,” Annals of Internal Medicine, vol. 144, no. 2, pp. 73–81, 2006. View at Scopus
  8. F. Craik and T. Salthouse, Handbook of Aging and Cognition, Psychology Press, New York, NY, USA, 3rd edition, 2008.
  9. P. A. Reuter-Lorenz and D. C. Park, “Human neuroscience and the aging mind: a new look at old problems,” Journals of Gerontology B, vol. 65, no. 4, pp. 405–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Penke, S. M. Maniega, C. Murray et al., “A general factor of brain white matter integrity predicts information processing speed in healthy older people,” Journal of Neuroscience, vol. 30, no. 22, pp. 7569–7574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. A. Dennis and R. Cabeza, “Neuroimaging of healthy cognitive aging,” in Handbook of Aging and Cognition, F. I. M. Craik and T. A. Salthouse, Eds., pp. 1–54, Psychology Press, New York, NY, USA, 3rd edition, 2008.
  12. N. Raz, “The aging brain observed in vivo: differential changes and there modifiers,” in Cognitive Neuroscience of Aging, R. Cabeza, L. Nyberg, and D. C. Park, Eds., pp. 19–57, Oxford University Press, New York, NY, USA, 2005.
  13. N. Raz, P. Ghisletta, K. M. Rodrigue, K. M. Kennedy, and U. Lindenberger, “Trajectories of brain aging in middle-aged and older adults: regional and individual differences,” NeuroImage, vol. 51, no. 2, pp. 501–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Chen, H. D. Rosas, and D. H. Salat, “Age-associated reductions in cerebral blood flow are independent from regional atrophy,” NeuroImage, vol. 55, no. 2, pp. 468–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Abourezk and T. Toole, “Effect of task complexity on the relationship between physical fitness and reaction time in older women,” Journal of Aging and Physical Activity, vol. 3, pp. 251–260, 1995.
  16. L. Clarkson-Smith and A. A. Hartley, “Relationships between physical exercise and cognitive abilities in older adults,” Psychology and Aging, vol. 4, no. 2, pp. 183–189, 1989. View at Scopus
  17. C. H. Hillman, E. P. Weiss, J. M. Hagberg, and B. D. Hatfield, “The relationship of age and cardiovascular fitness to cognitive and motor processes,” Psychophysiology, vol. 39, no. 3, pp. 303–312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Renaud, L. Bherer, and F. Maquestiaux, “A high level of physical fitness is associated with more efficient response preparation in older adults,” Journals of Gerontology B, vol. 65, no. 3, pp. 317–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. W. W. Spirduso, “Reaction and movement time as a function of age and physical activity level,” Journals of Gerontology, vol. 30, no. 4, pp. 435–440, 1975. View at Scopus
  20. D. E. Barnes, K. Yaffe, W. A. Satariano, and I. B. Tager, “A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults,” Journal of the American Geriatrics Society, vol. 51, no. 4, pp. 459–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Aichberger, M. A. Busch, F. M. Reischies, A. Ströhle, A. Heinz, and M. A. Rapp, “Effect of physical inactivity on cognitive performance after 2.5 years of follow-up: longitudinal results from the survey of health, ageing, and retirement (SHARE),” GeroPsych, vol. 23, no. 1, pp. 7–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. E. Dustman, R. O. Ruhling, E. M. Russell et al., “Aerobic exercise training and improved neuropsychological function of older individuals,” Neurobiology of Aging, vol. 5, no. 1, pp. 35–42, 1984. View at Publisher · View at Google Scholar · View at Scopus
  23. R. E. Rikli and D. J. Edwards, “Effects of a three-year exercise program on motor function and cognitive processing speed in older women,” Research Quarterly for Exercise and Sport, vol. 62, no. 1, pp. 61–67, 1991. View at Scopus
  24. H. L. Hawkins, A. F. Kramer, and D. Capaldi, “Aging, exercise, and attention,” Psychology and Aging, vol. 7, no. 4, pp. 643–653, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. A. F. Kramer, S. Hahn, N. J. Cohen et al., “Ageing, fitness and neurocognitive function,” Nature, vol. 400, no. 6743, pp. 418–419, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. C. T. Albinet, G. Boucard, C. A. Bouquet, and M. Audiffren, “Increased heart rate variability and executive performance after aerobic training in the elderly,” European Journal of Applied Physiology, vol. 109, no. 4, pp. 617–624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Etnier, P. M. Nowell, D. M. Landers, and B. A. Sibley, “A meta-regression to examine the relationship between aerobic fitness and cognitive performance,” Brain Research Reviews, vol. 52, no. 1, pp. 119–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. L. Smiley-Oyen, K. A. Lowry, S. J. Francois, M. L. Kohut, and P. Ekkekakis, “Exercise, fitness, and neurocognitive function in older adults: the “selective improvement” and “cardiovascular fitness” hypotheses,” Annals of Behavioral Medicine, vol. 36, no. 3, pp. 280–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Renaud, F. Maquestiaux, S. Joncas, M. J. Kergoat, and L. Bherer, “The effect of three months of aerobic training on response preparation in older adults,” Frontiers in Aging Neuroscience, vol. 2, article 148, 2010.
  31. P. J. Smith, J. A. Blumenthal, B. M. Hoffman et al., “Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials,” Psychosomatic Medicine, vol. 72, no. 3, pp. 239–252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Angevaren, G. Aufdemkampe, H. J. Verhaar, A. Aleman, and L. Vanhees, “Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005381, 2008. View at Scopus
  33. R. C. Cassilhas, V. A. R. Viana, V. Grassmann et al., “The impact of resistance exercise on the cognitive function of the elderly,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1401–1407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Liu-Ambrose, M. G. Donaldson, Y. Ahamed et al., “Otago home-based strength and balance retraining improves executive functioning in older fallers: a randomized controlled trial,” Journal of the American Geriatrics Society, vol. 56, no. 10, pp. 1821–1830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Fabel and G. Kempermann, “Physical activity and the regulation of neurogenesis in the adult and aging brain,” NeuroMolecular Medicine, vol. 10, no. 2, pp. 59–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Liu-Ambrose, L. S. Nagamatsu, P. Graf, B. L. Beattie, M. C. Ashe, and T. C. Handy, “Resistance training and executive functions: a 12-month randomized controlled trial,” Archives of Internal Medicine, vol. 170, no. 2, pp. 170–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Rosano, A. B. Newman, R. Katz, C. H. Hirsch, and L. H. Kuller, “Association between lower digit symbol substitution test score and slower gait and greater risk of mortality and of developing incident disability in well-functioning older adults,” Journal of the American Geriatrics Society, vol. 56, no. 9, pp. 1618–1625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Dumurgier, A. Elbaz, P. Ducimetière, B. Tavernier, A. Alpérovitch, and C. Tzourio, “Slow walking speed and cardiovascular death in well functioning older adults: prospective cohort study,” The British Medical Journal, vol. 339, Article ID b4460, 2009. View at Scopus
  39. S. E. Hardy, S. Perera, Y. F. Roumani, J. M. Chandler, and S. A. Studenski, “Improvement in usual gait speed predicts better survival in older adults,” Journal of the American Geriatrics Society, vol. 55, no. 11, pp. 1727–1734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Voelcker-Rehage and C. Nieman, “Structural and functional brain changes related to different types of physical activity across the life span,” Neuroscience and Biobehavioral Reviews, 2013. View at Publisher · View at Google Scholar
  41. W. Spirduso, K. Francis, and P. MacRae, Physical Dimensions of Aging, Human Kinetics, Champaign, Ill, USA, 2nd edition, 2005.
  42. I. Lista and G. Sorrentino, “Biological mechanisms of physical activity in preventing cognitive decline,” Cellular and Molecular Neurobiology, vol. 30, no. 4, pp. 493–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. E. Black, K. R. Isaacs, B. J. Anderson, A. A. Alcantara, and W. T. Greenough, “Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 14, pp. 5568–5572, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. K. R. Isaacs, B. J. Anderson, A. A. Alcantara, J. E. Black, and W. T. Greenough, “Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning,” Journal of Cerebral Blood Flow and Metabolism, vol. 12, no. 1, pp. 110–119, 1992. View at Scopus
  45. H. van Praag, T. Shubert, C. Zhao, and F. H. Gage, “Exercise enhances learning and hippocampal neurogenesis in aged mice,” Journal of Neuroscience, vol. 25, no. 38, pp. 8680–8685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Lledo, M. Alonso, and M. S. Grubb, “Adult neurogenesis and functional plasticity in neuronal circuits,” Nature Reviews Neuroscience, vol. 7, no. 3, pp. 179–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. B. D. Eadie, V. A. Redila, and B. R. Christie, “Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density,” Journal of Comparative Neurology, vol. 486, no. 1, pp. 39–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Hu, Z. Ying, F. Gomez-Pinilla, and S. A. Frautschy, “Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus,” Brain Research, vol. 1249, pp. 191–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. K. I. Erickson, M. W. Voss, R. S. Prakash, et al., “Exercise training increases size of hippocampus and improves memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 3017–3022, 2011. View at Publisher · View at Google Scholar
  50. K. I. Erickson and A. F. Kramer, “Aerobic exercise effects on cognitive and neural plasticity in older adults,” The British Journal of Sports Medicine, vol. 43, no. 1, pp. 22–24, 2009. View at Publisher · View at Google Scholar
  51. C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. F. Kramer, K. I. Erickson, and S. J. Colcombe, “Exercise, cognition, and the aging brain,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1237–1242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Liu-Ambrose, L. S. Nagamatsu, M. W. Voss, K. M. Khan, and T. C. Handy, “Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial,” Neurobiology of Aging, vol. 33, no. 8, pp. 1690–1698, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Voelcker-Rehage, B. Godde, and U. M. Staudinger, “Physical and motor fitness are both related to cognition in old age,” European Journal of Neuroscience, vol. 31, no. 1, pp. 167–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Colcombe, K. I. Erickson, N. Raz et al., “Aerobic fitness reduces brain tissue loss in aging humans,” Journals of Gerontology A, vol. 58, no. 2, pp. 176–180, 2003. View at Scopus
  56. K. I. Erickson, R. S. Prakash, M. W. Voss et al., “Aerobic fitness is associated with hippocampal volume in elderly humans,” Hippocampus, vol. 19, no. 10, pp. 1030–1039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Ruscheweyh, C. Willemer, K. Krüger et al., “Physical activity and memory functions: an interventional study,” Neurobiology of Aging, vol. 32, no. 7, pp. 1304–1319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. S. J. Colcombe, A. F. Kramer, K. I. Erickson et al., “Cardiovascular fitness, cortical plasticity, and aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3316–3321, 2004. View at Publisher · View at Google Scholar
  59. M. W. Voss, R. S. Prakash, K. I. Erickson et al., “Plasticity of brain networks in a randomized intervention trial of exercise training in older adults,” Frontiers in Aging Neuroscience, vol. 2, article 32, 2010. View at Publisher · View at Google Scholar
  60. W. Spirduso, L. Poon, and W. Chodzo-Zajko, “Using resources and reserves in an exercise-cognition model,” in Exercise and Its Mediating Effects on Cognition, W. Spirduso, L. Poon, and W. Chodzo-Zajko, Eds., pp. 3–11, Human Kinetics, Champaign, Ill, USA, 2008.
  61. J. Bartholomew and J. Ciccolo, “Exercise, depression, and cognition,” in Exercise and Its Mediating Effects on Cognition, W. Spirduso, L. Poon, and W. Chodzo-Zajko, Eds., pp. 33–46, Human Kinetics, Champaign, Ill, USA, 2008.
  62. E. McAuley and S. Elavsky, “Self-efficacy, physical activity, and cognitive function,” in Exercise and Its Mediating Effects on Cognition, W. Spirduso, L. Poon, and W. Chodzo-Zajko, Eds., pp. 69–84, Human Kinetics, Champaign, Ill, USA, 2008.
  63. J. Joseph, “Diet, motor behavior, and cognition,” in Exercise and Its Mediating Effects on Cognition, W. Spirduso, L. Poon, and W. Chodzo-Zajko, Eds., pp. 119–129, Human Kinetics, Champaign, Ill, USA, 2008.
  64. M. Lopez, “Exercise and sleep quality,” in Exercise and Its Mediating Effects on Cognition, W. Spirduso, L. Poon, and W. Chodzo-Zajko, Eds., pp. 131–146, Human Kinetics, Champaign, Ill, USA, 2008.
  65. M. V. Vitiello, “Exercise, sleep, and cognition: interactions in aging,” in Exercise and Its Mediating Effects on Cognition, W. Spirduso, L. Poon, and W. Chodzo-Zajko, Eds., pp. 146–165, Human Kinetics, Champaign, Ill, USA, 2008.
  66. L. P. Fried, C. M. Tangen, J. Walston et al., “Frailty in older adults: evidence for a phenotype,” Journals of Gerontology A, vol. 56, no. 3, pp. M146–M156, 2001. View at Scopus
  67. K. Rockwood, S. E. Howlett, C. MacKnight et al., “Prevalence, attributes, and outcomes of fi tness and frailty in community-dwelling older adults: report from the Canadian study of health and aging,” Journals of Gerontology A, vol. 59, no. 12, pp. 1310–1317, 2004.
  68. F. Landi, A. M. Abbatecola, M. Provinciali et al., “Moving against frailty: does physical activity matter?” Biogerontology, vol. 11, no. 5, pp. 537–545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. M. J. Peterson, C. Giuliani, M. C. Morey et al., “Physical activity as a preventative factor for frailty: the health, aging, and body composition study,” Journals of Gerontology A, vol. 64, no. 1, pp. 61–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Helbostad, O. Sletvold, and R. Moe-Nilssen, “Home training with and without additional group training in physically frail old people living at home: effect on health-related quality of life and ambulation,” Clinical Rehabilitation, vol. 18, no. 5, pp. 498–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Langlois, T. T. M. Vu, K. Chassé, G. Dupuis, M. J. Kergoat, and L. Bherer, “Benefits of physical exercise training on cognition and quality of life in frail older adults,” Journals of Gerontology B, vol. 68, no. 3, pp. 400–404, 2013. View at Publisher · View at Google Scholar
  72. Alzheimer's Association, “Alzheimer's disease facts and figures,” Alzheimer's & Dementia, vol. 7, no. 2, 2011.
  73. Y. E. Geda, R. O. Roberts, D. S. Knopman et al., “Physical exercise, aging, and mild cognitive impairment a population-based study,” Archives of Neurology, vol. 67, no. 1, pp. 80–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. M. Burns, B. B. Cronk, H. S. Anderson et al., “Cardiorespiratory fitness and brain atrophy in early Alzheimer disease,” Neurology, vol. 71, no. 3, pp. 210–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Chang, P. V. Jonsson, J. Snaedal et al., “The effect of midlife physical activity on cognitive function among older adults: AGES—Reykjavik study,” Journals of Gerontology A, vol. 65, no. 12, pp. 1369–1374, 2010. View at Publisher · View at Google Scholar
  76. P. A. Boyle, A. S. Buchman, R. S. Wilson, S. E. Leurgans, and D. A. Bennett, “Physical frailty is associated with incident mild cognitive impairment in community-based older persons,” Journal of the American Geriatrics Society, vol. 58, no. 2, pp. 248–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Sofi, D. Valecchi, D. Bacci et al., “Physical activity and risk of cognitive decline: a meta-analysis of prospective studies,” Journal of Internal Medicine, vol. 269, no. 1, pp. 107–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Heyn, B. C. Abreu, and K. J. Ottenbacher, “The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1694–1704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. N. T. Lautenschlager, K. L. Cox, L. Flicker et al., “Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial,” The Journal of the American Medical Association, vol. 300, no. 9, pp. 1027–1037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. L. H. P. Eggermont, D. F. Swaab, E. M. Hol, and E. J. A. Scherder, “Walking the line: a randomised trial on the effects of a short term walking programme on cognition in dementia,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 7, pp. 802–804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. L. D. Baker, L. L. Frank, K. Foster-Schubert et al., “Effects of aerobic exercise on mild cognitive impairment: a controlled trial,” Archives of Neurology, vol. 67, no. 1, pp. 71–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Kemoun, M. Thibaud, N. Roumagne et al., “Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 2, pp. 109–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. L. C. W. Lam, R. C. M. Chau, B. M. L. Wong et al., “Interim follow-up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline,” International Journal of Geriatric Psychiatry, vol. 26, no. 7, pp. 733–740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. L. S. Nagamatsu, A. Chan, J. C. Davis et al., “Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial,” Journal of Aging Research, vol. 2013, Article ID 861893, 10 pages, 2013. View at Publisher · View at Google Scholar
  85. E. V. Cyarto, N. T. Lautenschlager, P. M. Desmond et al., “Protocol for a randomized controlled trial evaluating the effect of physical activity on delaying the progression of white matter changes on MRI in older adults with memory complaints and mild cognitive impairment: the AIBL active trial,” BMC Psychiatry, vol. 12, article 167, 2012. View at Publisher · View at Google Scholar
  86. A. V. Tyndall, M. H. Davenport, B. J. Wilson et al., “The brain-in-motion study: effect of a 6-month aerobic exercise intervention on cerebrovascular regulation and cognitive function in older adults,” BMC Geriatrics, vol. 13, article 21, 2013. View at Publisher · View at Google Scholar