About this Journal Submit a Manuscript Table of Contents
Journal of Aging Research
Volume 2013 (2013), Article ID 951786, 13 pages
http://dx.doi.org/10.1155/2013/951786
Research Article

Relationship between Serum and Brain Carotenoids, -Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study

1Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
2University of Georgia-Athens, Athens, GA 30602, USA
3Temple University, Philadelphia, PA 19122, USA
4Harvard University, Boston, MA 02115, USA
5Emory University, Atlanta, GA 30322, USA
6Wayne State University, Detroit, MI 48202, USA
7University of Kentucky, Lexington, KY 40536, USA
8Yonsei University, Seoul 120-749, Republic of Korea
9DSM Nutritional Products, CH-4002 Basel, Switzerland

Received 4 January 2013; Revised 5 April 2013; Accepted 28 April 2013

Academic Editor: Paula Bickford

Copyright © 2013 Elizabeth J. Johnson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. L. Lopez, W. J. Jagust, S. T. DeKosky et al., “Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition study,” Archives of Neurology, vol. 60, no. 10, pp. 1385–1389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Gondo and L. W. Poon, “Cognitive function of Centenarians and its influence on longevity,” Annual Review of Gerontology and Geriatrics, vol. 27, pp. 129–149, 2007.
  3. L. S. Miller, M. B. Mitchell, J. L. Woodard, A. Davey, P. Martin, and L. W. Poon, “Cognitive performance in centenarians and the oldest old: norms from the georgia centenarian study,” Aging, Neuropsychology, and Cognition, vol. 17, no. 5, pp. 575–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Alzheimer’s Association 2010 Alzheimer’s Disease Facts and Figures, Alzheimer's Associaton National Office, Chicago, Ill, USA, 2010.
  5. M. C. Morris, D. A. Evans, C. C. Tangney, J. L. Bienias, and R. S. Wilson, “Associations of vegetable and fruit consumption with age-related cognitive change,” Neurology, vol. 67, no. 8, pp. 1370–1376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Lee, S. A. Kang, H. O. Lee et al., “Relationships between dietary intake and cognitive function level in Korean elderly people,” Public Health, vol. 115, no. 2, pp. 133–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. M. Ortega, A. M. Requejo, P. Andrés et al., “Dietary intake and cognitive function in a group of elderly people,” American Journal of Clinical Nutrition, vol. 66, no. 4, pp. 803–809, 1997. View at Scopus
  8. J. H. Kang, A. Ascherio, and F. Grodstein, “Fruit and vegetable consumption and cognitive decline in aging women,” Annals of Neurology, vol. 57, no. 5, pp. 713–720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Kang and F. Grodstein, “Plasma carotenoids and tocopherols and cognitive function: a prospective study,” Neurobiology of Aging, vol. 29, no. 9, pp. 1394–1403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Rinaldi, M. C. Polidori, A. Metastasio et al., “Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease,” Neurobiology of Aging, vol. 24, no. 7, pp. 915–919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. N. Keller, F. A. Schmitt, S. W. Scheff et al., “Evidence of increased oxidative damage in subjects with mild cognitive impairment,” Neurology, vol. 64, no. 7, pp. 1152–1156, 2005. View at Scopus
  12. E. Tarkowski, N. Andreasen, A. Tarkowski, and K. Blennow, “Intrathecal inflammation precedes development of Alzheimer's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 74, no. 9, pp. 1200–1205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. Teunissen, M. P. J. Van Boxtel, H. Bosma et al., “Inflammation markers in relation to cognition in a healthy aging population,” Journal of Neuroimmunology, vol. 134, no. 1-2, pp. 142–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Engelhart, M. I. Geerlings, J. Meijer et al., “Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study,” Archives of Neurology, vol. 61, no. 5, pp. 668–672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Pappolla, M. A. Smith, T. Bryant-Thomas et al., “Cholesterol, oxidative stress, and Alzheimer's disease: expanding the horizons of pathogenesis,” Free Radical Biology and Medicine, vol. 33, no. 2, pp. 173–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Wyss-Coray, “Inflammation in Alzheimer disease: driving force, bystander or beneficial response?” Nature Medicine, vol. 12, no. 9, pp. 1005–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Praticò, “Alzheimer's disease and oxygen radicals: new insights,” Biochemical Pharmacology, vol. 63, no. 4, pp. 563–567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Praticò and J. Q. Trojanowski, “Inflammatory hypotheses: novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets?” Neurobiology of Aging, vol. 21, no. 3, pp. 441–445, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. P. L. McGeer, E. G. McGeer, and K. Yasojima, “Alzheimer disease and neuroinflammation,” Journal of Neural Transmission, Supplement, no. 59, pp. 53–57, 2000. View at Scopus
  20. G. Ravaglia, P. Forti, F. Maioli et al., “Homocysteine and folate as risk factors for dementia and Alzheimer disease,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 636–643, 2005. View at Scopus
  21. L. W. Poon, M. Jazwinski, R. Green, et al., “Methodological consideration in studying centenarians: lessons learned from the Georgia Centenarian Studies,” in Annual Review of Gerontology and Geriatrics, L. W. Poon and T. T. Perls, Eds., pp. 231–264, Springer, New York, NY, USA, 2007.
  22. E. J. Johnson, K. McDonald, S. M. Caldarella, H. Y. Chung, A. M. Troen, and D. M. Snodderly, “Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women,” Nutritional Neuroscience, vol. 11, no. 2, pp. 75–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. N. E. Craft, T. B. Haitema, K. M. Garnett, K. A. Fitch, and C. K. Dorey, “Carotenoid, tocopherol, and retinol concentrations in elderly human brain,” Journal of Nutrition, Health and Aging, vol. 8, no. 3, pp. 156–162, 2004. View at Scopus
  24. E. J. Johnson, H. Y. Chung, S. M. Caldarella, and D. Max Snodderly, “The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1521–1529, 2008. View at Scopus
  25. J. H. Park, H. J. Hwang, M. K. Kim, and Y. C. Lee-Kim, “Con antioxidant vitamin status of the second generation rat brain sections,” Korean Journal of Nutrition, vol. 34, pp. 754–761, 2001.
  26. R. Vishwanathan, M. Neuringer, D. M. Snodderly, W. Schalch, and E. J. Johnson, “Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates,” Nutritional Neuroscience, vol. 16, no. 1, pp. 21–29, 2013. View at Publisher · View at Google Scholar
  27. J. I. Sheikh and J. A. Yesavage, “Geriatric Depression Scale (GDS): recent evidence and development of a shorter version,” Clinical Gerontologist, vol. 5, no. 1-2, pp. 165–173, 1986. View at Scopus
  28. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Reisberg, S. H. Ferris, M. J. De Leon, and T. Crook, “The global deterioration scale for assessment of primary degenerative dementia,” American Journal of Psychiatry, vol. 139, no. 9, pp. 1136–1139, 1982. View at Scopus
  30. J. Saxton, K. L. McGonigle-Gibson, A. A. Swihart, V. J. Miller, and F. Boller, “Assessment of the severly impaired patient: description and validation of a new neuropsychological test battery,” Psychological Assessment, vol. 2, no. 3, pp. 298–303, 1990. View at Scopus
  31. P. A. Fuld, Fuld Object Memory Evaluation Instruction Manual, Stoetling, Wood Dale, Ill, USA, 1981.
  32. D. Wechsler, Wechsler Adult Intelligence Scale-III, The Psychological Corporation, San Antonio, Tex, USA, 1997.
  33. J. Grigsby, K. Kaye, and L. J. Robbins, “Reliabilities, norms and factor structure of the Behavioral Dyscontrol Scale,” Perceptual and Motor Skills, vol. 74, no. 3, pp. 883–892, 1992. View at Scopus
  34. A. Benton and K. Hamsler, Multilingual Aphasia Examination, University of Iowa, Iowa City, Iowa, USA, 1997.
  35. R. C. Atkinson and R. M. Shiffrin, “The control of short-term memory,” Scientific American, vol. 225, no. 2, pp. 82–90, 1971. View at Scopus
  36. M. J. Chandler, L. H. Lacritz, L. S. Hynan et al., “A total score for the CERAD neuropsychological battery,” Neurology, vol. 65, no. 1, pp. 102–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. K. A. Welsh-Bohmer and R. C. Mohs, “Neuropsychological assessment of Alzheimer's disease,” Neurology, vol. 49, no. 3, pp. S11–S13, 1997. View at Scopus
  38. K. Shaw, M. Gearing, A. Davey et al., “Successful recruitment of centenarians for post-mortem brain donation: results from the Georgia Centenarian Study,” Journal of Bioscience and Medicine, vol. 2, no. 1, pp. 1–6, 2012.
  39. S. H. Ferris, T. Crook, C. Flicker, B. Reisberg, and R. T. Bartus, “Assessing cognitive impairment and evaluating treatment effects: psychometric performance test,” in Handbook For Clinical Memory Assessment of Older Adults, L. S. Poon, Ed., pp. 139–148, American Psychological Association, Washington, DC, USA, 1986.
  40. R. Letz, NES2 User's Manual (version 4.4), Neurobehavioral Systems, Winchester, Mass, USA, 1991.
  41. B. Johansson and S. H. Sarit, “Early cognitive markers of the incidence of dementia and mortality: a longitudinal population based study of the oldest old,” International Journal of Geriatric Psychiatry, vol. 12, pp. 53–59, 1997.
  42. M. Payton, K. M. Riggs, A. Spiro, S. T. Weiss, and H. Hu, “Relations of bone and blood lead to cognitive function: the VA normative aging study,” Neurotoxicology and Teratology, vol. 20, no. 1, pp. 19–27, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. E. D. Bigler and D. F. Tate, “Brain volume, intracranial volume, and dementia,” Investigative Radiology, vol. 36, no. 9, pp. 539–546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Haroutunian, L. B. Hoffman, and M. S. Beeri, “Is there a neuropathology difference between mild cognitive impairment and dementia?” Dialogues in Clinical Neuroscience, vol. 11, no. 2, pp. 171–179, 2009. View at Scopus
  45. W. J. Perrig, P. Perrig, and H. B. Stähelin, “The relation between antioxidants and memory performance in the old and very old,” Journal of the American Geriatrics Society, vol. 45, no. 6, pp. 718–724, 1997. View at Scopus
  46. J. Warsama Jama, L. J. Launer, J. C. M. Witteman et al., “Dietary antioxidants and cognitive function in a population-based sample of older persons: the Rotterdam study,” American Journal of Epidemiology, vol. 144, no. 3, pp. 275–280, 1996. View at Scopus
  47. S. L. Gray, J. T. Hanlon, L. R. Landerman, M. Artz, K. E. Schmader, and G. G. Fillenbaum, “Is antioxidant use protective of cognitive function in the community-dwelling elderly?” American Journal Geriatric Pharmacotherapy, vol. 1, no. 1, pp. 3–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Smith, R. Clark, D. Nutt, J. Haller, S. Hayward, and K. Perry, “Anti-oxidant vitamins and mental performance of the elderly,” Human Psychopharmacology, vol. 14, pp. 459–471, 1999.
  49. N. T. Akbaraly, H. Faure, V. Gourlet, A. Favier, and C. Berr, “Plasma carotenoid levels and cognitive performance in an elderly population: results of the EVA Study,” Journals of Gerontology A, vol. 62, no. 3, pp. 308–316, 2007. View at Scopus
  50. M. C. Morris, D. A. Evans, J. L. Bienias et al., “Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study,” Journal of the American Medical Association, vol. 287, no. 24, pp. 3230–3237, 2002. View at Scopus
  51. K. Yaffe, T. E. Clemons, W. L. McBee, and A. S. Lindblad, “Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial,” Neurology, vol. 63, no. 9, pp. 1705–1707, 2004. View at Scopus
  52. P. Mecocci, M. Cristina Polidori, A. Cherubini et al., “Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease,” Archives of Neurology, vol. 59, no. 5, pp. 794–798, 2002. View at Scopus
  53. http://fnic.nal.usda.gov/.
  54. D. M. Snodderly, “Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1448S–1461S, 1995. View at Scopus
  55. A. A. Woodall, G. Britton, and M. J. Jackson, “Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability,” Biochimica et Biophysica Acta, vol. 1336, no. 3, pp. 575–586, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. A. A. Woodall, S. W. M. Lee, R. J. Weesie, M. J. Jackson, and G. Britton, “Oxidation of carotenoids by free radicals: relationship between structure and reactivity,” Biochimica et Biophysica Acta, vol. 1336, no. 1, pp. 33–42, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Stahl, A. Junghans, B. De Boer, E. S. Driomina, K. Briviba, and H. Sies, “Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein,” FEBS Letters, vol. 427, no. 2, pp. 305–308, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Stahl and H. Sies, “Antioxidant activity of carotenoids,” Molecular Aspects of Medicine, vol. 24, no. 6, pp. 345–351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. W. I. Gruszecki, “Carotenoid orientation: role in membrane stabilization,” in Carotenoids in Health and Disease, N. I. Krinsky, S. T. Mayne, and H. Sies, Eds., pp. 151–163, Marcel Dekker, New York, NY, USA, 2004.
  60. W. Stahl and H. Sies, “Effects of carotenoids and retinoids on gap junctional communication,” BioFactors, vol. 15, no. 2-4, pp. 95–98, 2001. View at Scopus
  61. B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic and Physiological Optics, vol. 25, no. 4, pp. 315–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. L. M. Renzi and B. R. Hammond, “The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision,” Ophthalmic and Physiological Optics, vol. 30, no. 4, pp. 351–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. L. M. Renzi and B. R. Hammond, “The effect of macular pigment on heterochromatic luminance contrast,” Experimental Eye Research, vol. 91, no. 6, pp. 896–900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. B. Kritchevsky, A. J. Bush, M. Pahor, and M. D. Gross, “Serum carotenoids and markers of inflammation in nonsmokers,” American Journal of Epidemiology, vol. 152, no. 11, pp. 1065–1071, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. E. J. Johnson, “Obesity, lutein metabolism, and age-related macular degeneration: a web of connections,” Nutrition Reviews, vol. 63, no. 1, pp. 9–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Schuitemaker, M. G. Dik, R. Veerhuis et al., “Inflammatory markers in AD and MCI patients with different biomarker profiles,” Neurobiology of Aging, vol. 30, no. 11, pp. 1885–1889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Alzheimer's Association 2010 Alzheimer's Disease Facts and Figures, Alzheimer's Association National Office, Chicago, Ill, USA, 2010.
  68. F. Grodstein, J. H. Kang, R. J. Glynn, N. R. Cook, and J. M. Gaziano, “A randomized trial of beta carotene supplementation and cognitive function in men: the physicians' health study II,” Archives of Internal Medicine, vol. 167, no. 20, pp. 2184–2190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. H. Kang, N. R. Cook, J. E. Manson, J. E. Buring, C. M. Albert, and F. Grodstein, “Vitamin E, Vitamin C, Beta carotene, and cognitive function among women with or at risk of cardiovascular disease: the women's antioxidant and cardiovascular study,” Circulation, vol. 119, no. 21, pp. 2772–2780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. A. B. Mendelsohn, S. H. Belle, G. P. Stoehr, and M. Ganguli, “Use of antioxidant supplements and its association with cognitive function in a rural elderly cohort: the movies project,” American Journal of Epidemiology, vol. 148, no. 1, pp. 38–44, 1998. View at Scopus
  71. E. J. Johnson, “Human studies on bioavailability and serum response of carotenoids,” in CRC Handbook of Antioxidants, E. Cadenas and L. Packer, Eds., pp. 265–277, Marcel Dekker, New York, NY, USA, 2nd edition, 2001.
  72. B. R. Hammond, E. J. Johnson, R. M. Russell, et al., “Dietary modification of human macular pigment density,” Investigative Ophthalmology & Visual Science, vol. 38, pp. 1795–1801, 1997.
  73. E. J. Johnson, B. R. Hammond, K. J. Yeum et al., “Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density,” American Journal of Clinical Nutrition, vol. 71, no. 6, pp. 1555–1562, 2000. View at Scopus