Journal of Astrophysics The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation Mon, 14 Apr 2014 08:36:53 +0000 When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes. Gustavo Krause, Sergio Elaskar, and Andrea Costa Copyright © 2014 Gustavo Krause et al. All rights reserved. Invariant Imbedding and the Radiation Transfer in a Plane-Parallel Inhomogeneous Atmosphere Thu, 30 Jan 2014 09:40:16 +0000 The invariant imbedding technique is applied to the problems of radiation transfer in a plane-parallel inhomogeneous atmosphere. All the parameters which describe the elementary event of scattering and the distribution of the energy sources are allowed to vary with depth. Mathematically, the considered standard problems of the theory are reduced to initial-value problems which are better adapted to capabilities of the modern high speed computers. The reflectance of an atmosphere is shown to play a prominent role in describing the diffusion process since all the other characteristics of the radiation field are expressed through it. Three transfer problems frequently encountered in astrophysical applications are discussed: the radiation diffusion in the source-free medium, in a medium with arbitrarily distributed energy sources, as well as the problem of finding the statistical mean quantities, characteristics of the multiple scattering in the atmosphere. Arthur G. Nikoghossian Copyright © 2014 Arthur G. Nikoghossian. All rights reserved. -Process Nucleosynthesis in MHD Jet Explosions of Core-Collapse Supernovae Tue, 22 Oct 2013 15:05:44 +0000 We investigate the -process nucleosynthesis during the magnetohydrodynamical (MHD) explosion of a supernova in a helium star of 3.3 , where effects of neutrinos are taken into account using the leakage scheme in the two-dimensional (2D) hydrodynamic code. Jet-like explosion due to the combined effects of differential rotation and magnetic field is able to erode the lower electron fraction matter from the inner layers. We find that the ejected material of low electron fraction responsible for the -process comes out from just outside the neutrino sphere deep inside the Fe-core. It is found that heavy element nucleosynthesis depends on the initial conditions of rotational and magnetic fields. In particular, the third peak of the distribution is significantly overproduced relative to the solar system abundances, which would indicate a possible -process site owing to MHD jets in supernovae. Motoaki Saruwatari, Masa-aki Hashimoto, Ryohei Fukuda, and Shin-ichiro Fujimoto Copyright © 2013 Motoaki Saruwatari et al. All rights reserved. On Robe's Circular Restricted Problem of Three Variable Mass Bodies Tue, 22 Oct 2013 09:57:09 +0000 This paper investigates the motion of a test particle around the equilibrium points under the setup of the Robe’s circular restricted three-body problem in which the masses of the three bodies vary arbitrarily with time at the same rate. The first primary is assumed to be a fluid in the shape of a sphere whose density also varies with time. The nonautonomous equations are derived and transformed to the autonomized form. Two collinear equilibrium points exist, with one positioned at the center of the fluid while the other exists for the mass ratio and density parameter provided the density parameter assumes value greater than one. Further, circular equilibrium points exist and pairs of out-of-plane equilibrium points forming triangles with the centers of the primaries are found. The out-of-plane points depend on the arbitrary constant , of the motion of the primaries, density ratio, and mass parameter. The linear stability of the equilibrium points is studied and it is seen that the circular and out-of-plane equilibrium points are unstable while the collinear equilibrium points are stable under some conditions. A numerical example regarding out-of-plane points is given in the case of the Earth, Moon, and submarine system. This study may be useful in the investigations of dynamic problem of the “ocean planets” Kepler-62e and Kepler-62f orbiting the star Kepler-62. Jagadish Singh and Oni Leke Copyright © 2013 Jagadish Singh and Oni Leke. All rights reserved. Field Independent Cosmic Evolution Mon, 21 Oct 2013 15:03:01 +0000 It has been shown earlier that Noether symmetry does not admit a form of corresponding to an action in which is coupled to scalar-tensor theory of gravity or even for pure theory of gravity taking anisotropic model into account. Here, we prove that theory of gravity does not admit Noether symmetry even if it is coupled to tachyonic field and considering a gauge in addition. To handle such a theory, a general conserved current has been constructed under a condition which decouples higher-order curvature part from the field part. This condition, in principle, solves for the scale-factor independently. Thus, cosmological evolution remains independent of the form of the chosen field, whether it is a scalar or a tachyon. Nayem Sk and Abhik Kumar Sanyal Copyright © 2013 Nayem Sk and Abhik Kumar Sanyal. All rights reserved. New Classes of Charged Spheroidal Models Mon, 30 Sep 2013 11:44:54 +0000 New classes of exact solutions to the Einstein-Maxwell system is found in closed form by assuming that the hypersurface is spheroidal. This is achieved by choosing a particular form for the electric field intensity. A class of solution is found for all positive spheroidal parameter for a specific form of electric field intensity. In general, the condition of pressure isotropy reduces to a difference equation with variable, rational coefficients that can be solved. Consequently, an explicit solution in series form is found. By placing restrictions on the parameters, it is shown that the series terminates and there exist two classes of solutions in terms of elementary functions. These solutions contain the models found previously in the limit of vanishing charge. Solutions found are directly relating the spheroidal parameter and electric field intensity. Masses obtained are consistent with the previously reported experimental and theoretical studies describing strange stars. A physical analysis indicates that these models may be used to describe a charged sphere. S. Thirukkanesh Copyright © 2013 S. Thirukkanesh. All rights reserved. Constraint on Heavy Element Production in Inhomogeneous Big-Bang Nucleosynthesis from the Light Element Observations Sun, 01 Sep 2013 13:19:44 +0000 We investigate the observational constraints on the inhomogeneous big-bang nucleosynthesis that Matsuura et al. (2005) suggested that states the possibility of the heavy element production beyond 7Li in the early universe. From the observational constraints on light elements of 4He and D, possible regions are found on the plane of the volume fraction of the high-density region against the ratio between high- and low-density regions. In these allowed regions, we have confirmed that the heavy elements beyond Ni can be produced appreciably, where p- and/or r-process elements are produced well simultaneously. Riou Nakamura, Masa-aki Hashimoto, Shin-ichiro Fujimoto, and Katsuhiko Sato Copyright © 2013 Riou Nakamura et al. All rights reserved. The Total Solar Irradiance, UV Emission and Magnetic Flux during the Last Solar Cycle Minimum Mon, 22 Jul 2013 12:57:16 +0000 We have analyzed the total solar irradiance (TSI) and the spectral solar irradiance as ultraviolet emission (UV) in the wavelength range 115–180 nm, observed with the instruments TIM and SOLSTICE within the framework of SORCE (the solar radiation and climate experiment) during the long solar minimum between the 23rd and 24th cycles. The wavelet analysis reveals an increase in the magnetic flux in the latitudinal zone of the sunspot activity, accompanied with an increase in the TSI and UV on the surface rotation timescales of solar activity complexes. In-phase coherent structures between the midlatitude magnetic flux and TSI/UV appear when the long-lived complexes of the solar activity are present. These complexes, which are related to long-lived sources of magnetic fields under the photosphere, are maintained by magnetic fluxes reappearing in the same longitudinal regions. During the deep solar minimum (the period of the absence of sunspots), a coherent structure has been found, in which the phase between the integrated midlatitude magnetic flux is ahead of the total solar irradiance on the timescales of the surface rotation. E. E. Benevolenskaya and I. G. Kostuchenko Copyright © 2013 E. E. Benevolenskaya and I. G. Kostuchenko. All rights reserved. Ion-Acoustic Instabilities in a Multi-Ion Plasma Tue, 16 Jul 2013 11:24:31 +0000 We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (, , and ) by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed () to the thermal spread (ts) modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of ions for ts (and vice versa) can be used to detect the presence of negatively charged oxygen ions and also their thermalization. Noble P. Abraham, Sijo Sebastian, G. Sreekala, R. Jayapal, C. P. Anilkumar, and Venugopal Chandu Copyright © 2013 Noble P. Abraham et al. All rights reserved. Dark Energy from the Gas of Wormholes Thu, 20 Jun 2013 13:17:53 +0000 We assume the space-time foam picture in which the vacuum is filled with a gas of virtual wormholes. It is shown that virtual wormholes form a finite (of the Planckian order) value of the energy density of zero-point fluctuations. However such a huge value is compensated by the contribution of virtual wormholes to the mean curvature and the observed value of the cosmological constant is close to zero. A nonvanishing value appears due to the polarization of vacuum in external classical fields. In the early Universe some virtual wormholes may form actual ones. We show that in the case of actual wormholes vacuum polarization effects are negligible while their contribution to the mean curvature is apt to form the observed dark energy phenomenon. Using the contribution of wormholes to dark matter and dark energy we find estimates for characteristic parameters of the gas of wormholes. A. A. Kirillov and E. P. Savelova Copyright © 2013 A. A. Kirillov and E. P. Savelova. All rights reserved.