About this Journal Submit a Manuscript Table of Contents
Journal of Botany
Volume 2012 (2012), Article ID 186891, 7 pages
http://dx.doi.org/10.1155/2012/186891
Research Article

Seed Cryopreservation of Some Medicinal Legumes

Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia

Received 8 July 2011; Accepted 30 November 2011

Academic Editor: Olivier Honnay

Copyright © 2012 Alla B. Kholina and Nina M. Voronkova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Shibata, E. Sakai, and K. Shimomura, “Effect of rapid freezing and thawing on hard-seed breaking in Astragalus mongholicus Bunge (Leguminosae),” Journal of Plant Physiology, vol. 147, no. 1, pp. 127–131, 1995. View at Scopus
  2. S. Sinclair, “Chinese herbs: a clinical review of Astragalus, Ligusticum, and Schizandrae,” Alternative Medicine Review, vol. 3, no. 5, pp. 338–344, 1998. View at Scopus
  3. N. S. Pavlova, “Family Fabaceae,” in The Vascular Plants of the Soviet Far East, S. S. Kharkevich, Ed., vol. 4, pp. 191–339, Nauka, Leningrad, Russia, 1989.
  4. O. V. Neretina, A. S. Gromova, V. I. Lutsky, and A. A. Semenov, “Component composition of species of the genus Hedysarum (Fabaceae),” Rastitel’nye Resursy, vol. 40, no. 4, pp. 111–138, 2004.
  5. K. F. Blinova and E. I. Sakanyan, “Species of Oxytropis used in Tibetan medicine and their flavonoid composition,” Rastitel’nye Resursy, vol. 22, no. 2, pp. 266–272, 1986.
  6. D. Batsuren, S. Tsetsegmaa, N. Batbayar et al., “Alkaloids of Oxytropis. I,” Chemistry of Natural Compounds, vol. 28, no. 3-4, pp. 340–344, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Long and Q. Li, “The effect of alkaloid from Oxytropis ochrocephala on growth inhibition and expression of PCNA and p53 in mice bearing H22 hepatocellular carcinoma,” Yakugaku Zasshi, vol. 125, no. 8, pp. 665–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Cha, M. R. Jeong, S. I. Jeong, and K. Y. Lee, “Antibacterial activity of sophoraflavanone G isolated from the roots of Sophora flavescens,” Journal of Microbiology and Biotechnology, vol. 17, no. 5, pp. 858–864, 2007. View at Scopus
  9. S. Y. Ryu, S. U. Choi, S. K. Kim et al., “In vitro antitumour activity of flavonoids from Sophora flavescens,” Phytotherapy Research, vol. 11, no. 1, pp. 51–53, 1997. View at Publisher · View at Google Scholar
  10. G. A. Denisova, V. I. Dorofeev, and G. I. Kapranova, “Genus Trifolium L.,” in Plant Resources of the USSR: Flowering Plants, Their Chemical Composition and Use, P. D. Sokolov, Ed., vol. 3 of Hydrangeaceae—Haloragaceae Families, pp. 181–191, Nauka, Leningrad, Russia, 1987.
  11. S. S. Kang, Y. S. Chang, and J. S. Kim, “Two new acylated flavonol glycosides from Vicia amurensis,” Chemical and Pharmaceutical Bulletin, vol. 48, no. 8, pp. 1242–1245, 2000. View at Scopus
  12. P. L. Popov, “Plant species, using against virus infections of man and animals: regularities of the distribution in the phylogenetic classification system,” Journal of Stress Physiology and Biochemistry, vol. 4, no. 3, pp. 17–64, 2008.
  13. O. V. Maksimov, P. G. Gorovoy, and G. N. Chumak, “The content of antioxidants in the seeds of some species of Primorie flora,” Rastitel’nye Resursy, vol. 26, no. 4, pp. 487–498, 1990.
  14. F. Engelmann, “Plant cryopreservation: progress and prospects,” In Vitro Cellular and Developmental Biology—Plant, vol. 40, no. 5, pp. 427–433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. C. Pence, “Cryopreservation of seeds of Ohio native plants and related species,” Seed Science and Technology, vol. 19, no. 2, pp. 235–251, 1991.
  16. P. C. Stanwood, “Cryopreservation of seed germplasm for genetic conservation,” in Cryopreservation of Plant Cells and Organs, K. K. Kartha, Ed., pp. 199–226, CRC Press, Boca Raton, Fla, USA, 1985.
  17. P. Chmielarz, “Cryopreservation of dormant European ash (Fraxinus excelsior) orthodox seeds,” Tree Physiology, vol. 29, no. 10, pp. 1279–1285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Chmielarz, “Cryopreservation of the non-dormant orthodox seeds of Ulmus glabra,” Acta Biologica Hungarica, vol. 61, no. 2, pp. 224–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. H. Touchell and K. W. Dixon, “Cryopreservation of seed of Western Australian native species,” Biodiversity and Conservation, vol. 2, no. 6, pp. 594–602, 1993. View at Scopus
  20. C. Walters, L. Wheeler, and P. C. Stanwood, “Longevity of cryogenically stored seeds,” Cryobiology, vol. 48, no. 3, pp. 229–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. W. Pritchard, K. R. Manger, and F. G. Prendergast, “Changes in Trifolium arvense seed quality following alternating temperature treatment using liquid nitrogen,” Annals of Botany, vol. 62, no. 1, pp. 1–11, 1988. View at Scopus
  22. C. W. Vertucci, “Effect of cooling rate on seeds exposed to liquid nitrogen temperatures,” Plant Physiology, vol. 90, no. 4, pp. 1478–1485, 1989.
  23. N. M. Voronkova and A. B. Kholina, “An influence of temperature factor and scarification on seed germination and growth of seedlings of Sophora flavescens Soland,” Rastitel’nye Resursy, vol. 39, no. 1, pp. 43–49, 2003.
  24. J. M. Baskin, C. C. Baskin, and X. Li, “Taxonomy, anatomy and evolution of physical dormancy in seeds,” Plant Species Biology, vol. 15, no. 2, pp. 139–152, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Kelly, J. Van Staden, and W. E. Bell, “Seed coat structure and dormancy,” Plant Growth Regulation, vol. 11, no. 3, pp. 201–209, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. A. B. Kholina and N. M. Voronkova, “Conserving the gene pool of Far Eastern plants by means of seed cryopreservation,” Biology Bulletin, vol. 35, no. 3, pp. 262–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. N. M. Voronkova, A. B. Kholina, and V. P. Verkholat, “Plant biomorphology and seed germination in pioneer species of Kamchatka volcanoes,” Biology Bulletin, vol. 35, no. 6, pp. 599–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Chmielarz, “Sensitivity of Tilia cordata seeds to dehydration and temperature of liquid nitrogen,” Dendrobiology, vol. 47, pp. 71–77, 2002.
  29. S. Gonçalves, L. Fernandes, F. Pérez-García, M. E. González-Benito, and A. Romano, “Germination requirements and cryopreservation tolerance of seeds of the endangered species Tuberaria major,” Seed Science and Technology, vol. 37, no. 2, pp. 480–484, 2009. View at Scopus
  30. A. N. Salomao, “Effects of liquid nitrogen storage on Zizyphus joazeiro seeds,” Cryo-Letters, vol. 16, no. 2, pp. 85–90, 1995. View at Scopus
  31. F. Pérez-García, “Effect of cryopreservation, gibberellic acid and mechanical scarification on the seed germination of eight endemic species from the Canary Islands,” Seed Science and Technology, vol. 36, no. 1, pp. 237–242, 2008. View at Scopus
  32. A. N. Salomão, “Tropical seed species' responses to liquid nitrogen exposure,” Brasilian Journal of Plant Physiology, vol. 14, no. 2, pp. 133–138, 2002. View at Scopus
  33. D. N. Peacock and K. E. Hummer, “Pregermination studies with liquid nitrogen and sulfuric acid on several Rubus species,” HortScience, vol. 31, no. 2, pp. 238–239, 1996. View at Scopus
  34. F. Pérez-García and M. E. González-Benito, “Seed cryopreservation of Halimium and Helianthemum species,” Cryo-Letters, vol. 29, no. 4, pp. 271–276, 2008. View at Scopus
  35. M. E. González-Benito, F. Fernández-Llorente, and F. Pérez-Garcia, “Interaction between cryopreservation, rewarming rate and seed humidification on the germination of two Spanish endemic species,” Annals of Botany, vol. 82, no. 5, pp. 683–686, 1998. View at Publisher · View at Google Scholar
  36. V. L. Tikhonova, “Long-term storage of seeds,” Russian Journal of Plant Physiology, vol. 46, no. 3, pp. 400–408, 1999. View at Scopus
  37. T. V. Nikishina, A. S. Popov, G. L. Kolomeitseva, and B. N. Golovkin, “Effect of cryoconservation on seed germination of rare tropical orchids,” Russian Journal of Plant Physiology, vol. 48, no. 6, pp. 810–815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. S. Popov, E. V. Popova, T. V. Nikishina, and G. L. Kolomeytseva, “The development of juvenile plants of the hybrid orchid Bratonia after seed cryopreservation,” Cryo-Letters, vol. 25, no. 3, pp. 205–212, 2004. View at Scopus