About this Journal Submit a Manuscript Table of Contents
Journal of Botany
Volume 2012 (2012), Article ID 737035, 4 pages
http://dx.doi.org/10.1155/2012/737035
Research Article

Osmotic Stress Induces the Expression of VvMAP Kinase Gene in Grapevine (Vitis vinifera L.)

1Laboratoire de Physiologie Moléculaire des Plantes, Centre de Biotechnologie, B.P. 901, 2050 Hammam Lif, Tunisia
2AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, 67935 Neustadt, Germany

Received 29 July 2011; Revised 14 October 2011; Accepted 3 November 2011

Academic Editor: Andrew Wood

Copyright © 2012 Samia Daldoul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Neill and E. C. Burnett, “Regulation of gene expression during water deficit stress,” Plant Growth Regulation, vol. 29, no. 1-2, pp. 23–33, 1999. View at Scopus
  2. J. K. Zhu, “Salt and drought stress signal transduction in plants,” Annual Review of Plant Biology, vol. 53, pp. 247–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Gomi, D. Ogawa, S. Katou et al., “A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco,” Plant and Cell Physiology, vol. 46, no. 12, pp. 1902–1914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mayrose, A. Bonshtien, and G. Sessa, “LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses,” The Journal of Biological Chemistry, vol. 279, no. 15, pp. 14819–14827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Bögre, W. Ligterink, I. Meskiene et al., “Wounding induces the rapid and transient activation of a specific MAP kinase pathway,” Plant Cell, vol. 9, no. 1, pp. 75–83, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Lalle, S. Visconti, M. Marra, L. Camoni, R. Velasco, and P. Aducci, “ZmMPK6, a novel maize MAP kinase that interacts with 14-3-3 proteins,” Plant Molecular Biology, vol. 59, no. 5, pp. 713–722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Takezawa, “Elicitor- and A23187-induced expression of WCK-1, a gene encoding mitogen-activated protein kinase in wheat,” Plant Molecular Biology, vol. 40, no. 6, pp. 921–933, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. W. Knetsch, M. Wang, B. Ewa Snaar-Jagalska, and S. Heimovaara-Dijkstra, “Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts,” Plant Cell, vol. 8, no. 6, pp. 1061–1067, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. T. K. Hyun, J. S. Kim, S. Y. Kwon, and S. H. Kim, “Comparative genomic analysis of mitogen activated protein kinase gene family in grapevine,” Genes and Genomics, vol. 32, no. 3, pp. 275–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. P. Chen, W. S. Ma, Z. J. Huang, T. Xu, Y. B. Xue, and Y. Z. Shen, “Isolation and characterization of TaGSK1 involved in wheat salt tolerance,” Plant Science, vol. 165, no. 6, pp. 1369–1375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Cellier, G. Conéjéro, J. C. Breitler, and F. Casse, “Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower,” Plant Physiology, vol. 116, no. 1, pp. 319–328, 1998. View at Scopus
  12. L. Hamrouni, F. Ben Abdallah, C. Abdelly, and A. Ghorbel, “Evaluation de la tolérance au sel chez les vignes tunisiennes cultivées in vitro,” in Poceedings du XXVIIème Congrès Mondial de la Vigne et du Vin, pp. 102–112, Bratislava, Slovakia, June 2002.
  13. I. Toumi, M. Gargouri, I. Nouairi et al., “Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance,” Biologia Plantarum, vol. 52, no. 1, pp. 161–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Toumi, P. N. Moschou, K. A. Paschalidis et al., “Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine,” Journal of Plant Physiology, vol. 167, no. 7, pp. 519–525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Daldoul, S. Chenenanoui, A. Mliki, and M. Höfer, “Improvement of an RNA purification method for grapevine (Vitis vinifera L.) suitable for cDNA library construction,” Acta Physiologiae Plantarum, vol. 31, no. 4, pp. 871–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Daldoul, S. Guillaumie, G. M. Reustle et al., “Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars,” Plant Science, vol. 179, no. 5, pp. 489–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. H. J. Bohnert and J. C. Cushman, “Plant and environmental stress adaptation strategies,” in Plant Biotechnology and Transgenic Plants, K.-M. Oksman-Caldentey and W. H. Barz, Eds., pp. 635–664, Marcel Dekker, New York, NY, USA, 2002.
  19. R. Munns, “Comparative physiology of salt and water stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 239–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Xiong and Y. Yang, “Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase,” Plant Cell, vol. 15, no. 3, pp. 745–759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Jonak, S. Kiegerl, W. Ligterink, P. J. Barker, N. S. Huskisson, and H. Hirt, “Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 11274–11279, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Pöpping, T. Gibbons, and M. D. Watson, “The Pisum sativum MAP kinase homologue (PsMAPK) rescues the Saccharomyces cerevisiae hog1 deletion mutant under conditions of high osmotic stress,” Plant Molecular Biology, vol. 31, no. 2, pp. 355–363, 1996. View at Scopus