About this Journal Submit a Manuscript Table of Contents
Journal of Botany
Volume 2012 (2012), Article ID 789879, 8 pages
http://dx.doi.org/10.1155/2012/789879
Research Article

The Effect of NaCl and CMA on the Growth and Morphology of Arctostaphylos uva-ursi (Kinnikinnick)

Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9

Received 26 July 2011; Revised 27 September 2011; Accepted 27 September 2011

Academic Editor: Sergi Munné-Bosch

Copyright © 2012 Jane P. Young et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Buttle and C. F. Labadia, “Deicing salt accumulation and loss in highway snowbanks,” Journal of Environmental Quality, vol. 28, no. 1, pp. 155–164, 1999. View at Scopus
  2. D. M. Ramakrishna and T. Viraraghavan, “Environmental impact of chemical deicers—a review,” Water, Air, and Soil Pollution, vol. 166, no. 1–4, pp. 49–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Bernstein, L. E. Francois, and R. A. Clark, “Salt tolerance of ornamental shrubs and ground covers,” Journal of American Society of Horticultural Science, vol. 97, pp. 550–556, 1972.
  4. C. Cassaniti, C. Leonardi, and T. J. Flowers, “The effects of sodium chloride on ornamental shrubs,” Scientia Horticulturae, vol. 122, no. 4, pp. 586–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. W. Davison, “The effects of de-icing salt on roadside verges. 1. Soil and plant analysis,” Journal of Applied Ecology, vol. 8, pp. 555–561, 1971.
  6. A. E. Rich, “Effects of salt on Eastern highway trees,” American Nurseryman, vol. 135, pp. 36–39, 1972.
  7. A. Galuszka, Z. M. Migaszewski, R. Podlaski, S. Dolegowska, and A. Michalik, “The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland,” Environmental Monitoring and Assessment, vol. 176, pp. 451–464, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Parida and A. B. Das, “Salt tolerance and salinity effects on plants: a review,” Ecotoxicology and Environmental Safety, vol. 60, no. 3, pp. 324–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Tester and R. Davenport, “Na+ tolerance and Na+ transport in higher plants,” Annals of Botany, vol. 91, no. 5, pp. 503–527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Sucoff, S. G. Hong, and A. Wood, “NaCl and twig dieback along highways and cold hardiness of highway versus garden twigs,” Canadian Journal of Botany, vol. 54, pp. 2268–2274, 1976.
  12. E. V. Maas, “Crop tolerance to saline sprinkling water,” Plant and Soil, vol. 89, no. 1–3, pp. 273–284, 1985. View at Publisher · View at Google Scholar · View at Scopus
  13. G. P. Lumis, G. Hofstra, and R. Hall, Salt Damage to Roadside Plants, vol. 275, Ontario Department of Agriculture and Food Agdex, 1971.
  14. G. Hofstra, R. Hall, and G. P. Lumis, “Studies of salt-induced damage to roadside plants in Ontario,” Journal of Arboriculture, vol. 5, pp. 25–31, 1979.
  15. S. S. Kaushal, P. M. Groffman, G. E. Likens et al., “Increased salinization of fresh water in the Northeastern United States,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13517–13520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. V. M. Moran, L. A. Abron, and L. W. Weinberger, “A comparison of conventional and alternative deicers: an environmental impact perspective,” in Chemical Deicers and the Environment, pp. 261–341, Lewis Publishers, Boca Raton, Fla, USA, 1992.
  17. S. A. Dunn and R. U. Schenk, “Alternatives to sodium chloride for highway deicing,” Transportation Research Record 776, Guideway Snow and Ice Control and Roadside Maintenance, Washington, DC, USA, 1980.
  18. R. R. Horner, “Environmental monitoring and evaluation of calcium magnesium acetate (CMA),” Cooperative Highway Research Program Report 305, Transportation Research Board. National Research Council, Washington, DC, USA, 1988.
  19. G. Winters, J. Gidley, and H. Hunt, “Environmental evaluation of CMA,” Report FHWA-RD-84-095, FHWA, U.S. Department of Transportation, 1985.
  20. A. Joutti, E. Schultz, P. Pessala, T. Nysten, and P. Hellsten, “Ecotoxicity of alternative de-icers,” Journal of Soils and Sediments, vol. 3, no. 4, pp. 269–272, 2003. View at Scopus
  21. D. G. Manning and L. W. Crowder, “A Comparative Field Study of Calcium Magnesium Acetate and Rock Salt during the Winter of 1986-1987,” The Research and Development Branch, Ontario Ministry of Transportation and Communications, Downsview, Ontario, Canada, 1987.
  22. R. L. McCrum, “Calcium magnesium acetate and sodium chloride as highway deicing salts. A comparative study,” Materials Performance, vol. 28, no. 12, pp. 24–28, 1989.
  23. P. D. Warrington, “Roadsalt and winter maintenance for British Columbia municipalities: best management practices to protect water quality,” Water, Air and Climate Change Branch, Environmental Protection Division, Ministry of Environment, Government of British Columbia, 1998, http://www.env.gov.bc.ca/wat/wq/bmps/roadsalt.html.
  24. T. D. Landis, K. M. Wilkinson, D. E. Steinfeld, S. A. Riley, and G. N. Fekaris, “Roadside revegetation of forest highways: new applications for native plants,” Native Plants, vol. 6, pp. 297–305, 2005.
  25. H. Koester, “Native plants and urban sustainability,” Native Plants, vol. 9, pp. 323–333, 2008.
  26. M. A. Dirr, “Salts and woody-plant interactions in the urban environment,” USDA Forest Service General Technical Report 22, US Northeast Forest Experiment Station, 1976.
  27. USDA (United States Department of Agriculture), “Plant fact sheet: Bearberry (Arctostaphylos uva-ursi (L.) Spreng. USDA,” Natural Resources Conservation Service, Northeast Plant Materials Program, Washington, DC, USA, 2002.
  28. A. MacKinnon, J. Pojar, and R. Coupe, Plants of Northern British Columbia, B.C. Ministry of Forests and Lone Pine Publishing, , Vancouver, BC, Canada, 2nd edition, 1999.
  29. D. Johnson, L. Kershaw, A. MacKinnon, and J. Pojar, Plants of the Western Boreal Forest and Aspen Parkland, Lone Pine Publishing and the Canadian Forest Service, Edmonton, Alberta, Canada, 1995.
  30. C. Tatarniuk, R. Donahue, and D. Sego, “Snow characterization at a city snow storage facility,” Journal of Cold Regions Engineering, vol. 23, no. 4, Article ID 001904QCR, pp. 136–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. W. H. Hendershot, H. Lalande, and M. Duquette, “Soil reaction and exchangeable acidity,” in Soil Sampling and Methods of Analysis, M. R. Carter and E. G. Gregorich, Eds., pp. 173–178, CRC Press, Taylor and Francis Group, Boca Raton, Fla, USA, 2nd edition, 2008.
  32. F. Eryilmaz, “The relationships between salt stress and anthocyanin content in higher plants,” Biotechnology and Biotechnological Equipment, vol. 20, no. 1, pp. 47–52, 2006. View at Scopus
  33. J. J. Miller and D. Curtin, “Electrical conductivity and soluble ions,” in Soil Sampling and Methods of Analysis, M. R. Carter and and E. G. Gregorich, Eds., pp. 161–171, CRC Press, Taylor and Francis Group, Boca Raton, Fla, USA, 2nd edition, 2008.
  34. D. C. Close and C. L. Beadle, “The ecophysiology of foliar anthocyanin,” Botanical Review, vol. 69, no. 2, pp. 149–161, 2003. View at Scopus
  35. L. Chalker-Scott, “Environmental significance of anthocyanins in plant stress responses,” Photochemistry and Photobiology, vol. 70, no. 1, pp. 1–9, 1999. View at Scopus
  36. L. Shaked-Sachray, D. Weiss, M. Reuveni, A. Nissim-Levi, and M. Oren-Shamir, “Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment,” Physiologia Plantarum, vol. 114, no. 4, pp. 559–565, 2002. View at Publisher · View at Google Scholar
  37. Y. Tanaka, N. Sasaki, and A. Ohmiya, “Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids,” Plant Journal, vol. 54, no. 4, pp. 733–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Tozlu, G. A. Moore, and C. L. Guy, “Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata,” Australian Journal of Plant Physiology, vol. 27, no. 1, pp. 35–42, 2000. View at Scopus
  39. E. Tavakkoli, F. Fatehi, S. Coventry, P. Rengasamy, and G. K. McDonald, “Additive effects of Na+ and Cl- ions on barley growth under salinity stress,” Journal of Experimental Botany, vol. 62, no. 6, pp. 2189–2203, 2011. View at Publisher · View at Google Scholar
  40. E. Tavakkoli, P. Rengasamy, and G. K. McDonald, “High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress,” Journal of Experimental Botany, vol. 61, no. 15, pp. 4449–4459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Hillel, Introduction to Environmental Soil Physics, Academic Press, 2004.
  42. N. C. Brady and R. R. Weil, The Nature and Properties of Soils, Prentice Hall, 13th edition, 2002.
  43. D. Ernst, G. Demich, and T. Weiman, Calcium Magnesium Acetate Research in Washington State, Transportation Research Board, National Research Council, Washington, DC, USA, 1985.
  44. W. C. Ormsby, “New technologies improve cost-effectiveness of CMA,” U.S. Department of Transport. Federal Highway Administration. Public Roads, vol. 63, no. 3, 1999.
  45. W. Fu and A. P. Mathews, “Two-stage fermentation process for the production of calcium magnesium acetate and propionate road deicers,” Enzyme and Microbial Technology, vol. 36, no. 7, pp. 953–959, 2005. View at Publisher · View at Google Scholar
  46. B. Kermath, “Why go native? Landscaping for biodiversity and sustainability education,” International Journal of Sustainability in Higher Education, vol. 8, no. 2, pp. 210–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. R. Smith Jr. and R. D. B. Whalley, “A model for expanded use of native grasses,” Native Plants Journal, vol. 3, pp. 38–49, 2002.