About this Journal Submit a Manuscript Table of Contents
Journal of Botany
Volume 2013 (2013), Article ID 712405, 10 pages
http://dx.doi.org/10.1155/2013/712405
Research Article

Phenology of Some Phanerogams (Trees and Shrubs) of Northwestern Punjab, India

Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India

Received 23 January 2013; Revised 26 April 2013; Accepted 19 May 2013

Academic Editor: William K. Smith

Copyright © 2013 Gurveen Kaur et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. R. Heithaus, “The role of plant-pollinator interactions in determining community structure,” Annals of the Missouri Botanical Garden, vol. 61, pp. 675–691, 1974.
  2. G. W. Frankie, “Tropical forest phenology and pollinator plant coevolution,” in Coevolution of Animals and Plants, L. E. Gilbert and P. H. Raven, Eds., pp. 192–209, University of Texas Press, Austin, Tex, USA, 1975.
  3. H. R. Pulliam and M. R. Brand, “The production and utilization of seeds in plains grassland of southeastern Arizona,” Ecology, vol. 56, pp. 1158–1166, 1975.
  4. P. A. Opler, G. W. Frankie, and H. G. Baker, “Rainfall as a factor in the release, timing and synchronization of anthesis by tropical trees and shrubs,” Journal of Biogeography, vol. 3, pp. 231–236, 1976.
  5. J. N. Thompson and M. F. Willson, “Evolution of temperature fruit/bird interactions: phenological strategies,” Evolution, vol. 33, pp. 973–982, 1979.
  6. E. W. Stiles, “Patterns of fruit presentation and seed dispersal in bird disseminated woody plants in the eastern deciduous forest,” The American Naturalist, vol. 116, pp. 670–688, 1980.
  7. G. F. Estabrook, J. A. Winsor, A. G. Stephenson, and H. F. Howe, “When are two phenological patterns different?” Botanical Gazette, vol. 143, no. 3, pp. 374–378, 1982. View at Scopus
  8. H. S. Suresh and R. Sukumar, “Vegetative phenology of tropical montane forests in the Nilgiris, South India,” Journal of the National Science Foundation of Sri Lanka, vol. 39, no. 4, pp. 333–343, 2011. View at Scopus
  9. M. Monasterio and G. Sarmiento, “Phenological strategies of plant species in the tropical savanna and the semideciduous forest of the Venezuelan Ilanos,” Journal of Biogeography, vol. 3, pp. 352–356, 1976.
  10. D. Lieberman, “Seasonality and phenology in a dry tropical forest in Ghana,” Journal of Ecology, vol. 70, no. 3, pp. 791–806, 1982. View at Scopus
  11. R. Milla, P. Castro-Díez, and G. Montserrat-Martí, “Phenology of Mediterranean woody plants from NE Spain: synchrony, seasonality, and relationships among phenophases,” Flora, vol. 205, no. 3, pp. 190–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-D. Pilar and M.-M. Gabriel, “Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain,” Plant Ecology, vol. 139, no. 1, pp. 103–112, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Montserrat-Martí and C. Pérez-Rontomé, “Fruit growth dynamics and their effects on the phenological pattern of native Pistacia populations in NE Spain,” Flora, vol. 197, no. 3, pp. 161–174, 2002. View at Scopus
  14. D. De Steven, D. M. Windsor, and F. E. Putz, “Vegetative and reproductive phonologies of a palm assemblage in Panama,” Biotropica, vol. 19, pp. 342–356, 1987.
  15. S. H. Bullock and J. A. Solis-Magallanes, “Phenology of canopy trees of a tropical deciduous forest in Mexico,” Biotropica, vol. 22, pp. 22–35, 1990.
  16. L. Medway, “Phenology of a tropical rain forest in Malaya,” Biological Journal of the Linnean Society, vol. 4, no. 2, pp. 117–146, 1972. View at Scopus
  17. P. Lesica and P. M. Kittelson, “Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland,” Journal of Arid Environments, vol. 74, pp. 1013–1017, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Shen, Y. Tang, J. Chen, X. Zhu, and Y. Zheng, “Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau,” Agricultural and Forest Meteorology, vol. 151, no. 12, pp. 1711–1722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. P. Shukla and P. S. Ramakrishnan, “Phenology of trees in a sub-tropical humid forest in north-eastern India,” Vegetatio, vol. 49, no. 2, pp. 103–109, 1982. View at Publisher · View at Google Scholar · View at Scopus
  20. R. P. Shukla and P. S. Ramakrishnan, “Leaf dynamics of tropical trees related to successional status,” New Phytologist, vol. 97, no. 4, pp. 697–706, 1984. View at Scopus
  21. P. K. Ralhan, R. K. Khanna, S. P. Singh, and J. S. Singh, “Phenological characteristics of the tree layer of Kumaun Himalayan forests,” Vegetatio, vol. 60, no. 2, pp. 91–101, 1985. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. P. S. Pangtey, R. S. Rawal, N. S. Bankoti, and S. S. Samant, “Phenology of high-altitude plants of Kumaun in Central Himalaya, India,” International Journal of Biometeorology, vol. 34, no. 2, pp. 122–127, 1990. View at Scopus
  23. S. N. Prasad and M. Hegde, “Phenology and seasonality in the tropical deciduous forest of Bandipur, South India,” Proceedings: Plant Sciences, vol. 96, no. 2, pp. 121–133, 1986. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Sivaraj and K. V. Krishnamurthy, “Flowering phenology in the vegetation of Shervaroys, South India,” Vegetatio, vol. 79, no. 1-2, pp. 85–88, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. Bhat and K. S. Murali, “Phenology of understorey species of tropical moist forest of Western Ghats region of Uttara Kannada district in South India,” Current Science, vol. 81, no. 7, pp. 799–805, 2001. View at Scopus
  26. K. P. Singh and C. P. Kushwaha, “Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India,” Annals of Botany, vol. 97, no. 2, pp. 265–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. K. Vashisthe, N. Rawat, A. K. Chaturvedi, B. P. Nautiyal, P. Prasad, and M. C. Nautiyal, “An exploration on the phenology of different growth forms of an alpine expanse of north-west Himalaya, India,” New York Science Journal, vol. 2, pp. 29–42, 2009.
  28. V. P. Upadhyay and P. K. Mishra, “Phenology of mangroves tree species on Orissa coast, India,” Tropical Ecology, vol. 51, no. 2, pp. 289–295, 2010. View at Scopus
  29. A. R. Kasarkar and D. K. Kulkarni, “Phenological studies of family zingiberaceae with special reference to Alpinia and Zingiber from Kolhapur region(MS) India,” Bioscience Discovery, vol. 2, pp. 322–327, 2011.
  30. O. Bajpai, A. Kumar, A. K. Mishra, N. Sahu, S. K. Behera, and L. B. Chaudhary, “Phenological study of two dominant tree species in tropical moist deciduous forest from the Northern India,” International Journal of Botany, vol. 8, pp. 66–72, 2012.
  31. A. Lokho and Y. Kumar, “Reproductive phenology and morphology analysis of Indian Dendrobium Sw. (Orchidaceae) from the northeast region,” International Journal of Scientific and Research Publications, vol. 2, pp. 1–14, 2012.
  32. S. H. G. Champion and S. K. Seth, A Revised Survey of the Forest Types of India, The manager of Publications, Delhi, India, 1968.
  33. R. E. Sosebee and H. H. Wiebe, “Effect of phenological development on radiophosphorus translocation from leaves in crested wheatgrass,” Oecologia, vol. 13, no. 2, pp. 103–112, 1973. View at Scopus
  34. F. G. Taylor Jr., Phenodynamics of Production in a Mesic Deciduous Forest. US/IBP Eastern Deciduous Forest Biome, Oak Ridges National Laboratory, Oak Ridge, Tenn, USA, 1972.
  35. M. Y. Nuttonson, Wheat-Climate Relationships and the Use of Phenology in Ascertaining the Thermal and Photo-Thermal Requirements of Wheat; Based on Data of North America and Some Thermally Analogous Areas of North America, in the Soviet Union and in Finland, American Institute for Crop Ecology, Washington, DC, USA, 1955.
  36. J. P. Blaisdell, “Seasonal development and yield of native plants on the upper Snake River plains and their relation to certain climatic factors,” US Department of Agriculture Technical Bulletin, vol. 1190, pp. 1–68, 1958.
  37. J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14288–14293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Julien and J. A. Sobrino, “Global land surface phenology trends from GIMMS database,” International Journal of Remote Sensing, vol. 30, no. 13, pp. 3495–3513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Menzel, T. H. Sparks, N. Estrella et al., “European phenological response to climate change matches the warming pattern,” Global Change Biology, vol. 12, no. 10, pp. 1969–1976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Parmesan and G. Yohe, “A globally coherent fingerprint of climate change impacts across natural systems,” Nature, vol. 421, no. 6918, pp. 37–42, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Piao, J. Fang, L. Zhou, P. Ciais, and B. Zhu, “Variations in satellite-derived phenology in China's temperate vegetation,” Global Change Biology, vol. 12, no. 4, pp. 672–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Ollerton and A. J. Lack, “Flowering phenology: an example of relaxation of natural selection?” Trends in Ecology and Evolution, vol. 7, no. 8, pp. 274–276, 1992. View at Scopus
  43. F. Saavedra, D. W. Inouye, M. V. Price, and J. Harte, “Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment,” Global Change Biology, vol. 9, no. 6, pp. 885–894, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. N. C. Stenseth and A. Mysterud, “Climate, changing phenology, and other life history traits: nonlinearity and match-mismatch to the environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13379–13381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Ibáñez, R. B. Primack, A. J. Miller-Rushing et al., “Forecasting phenology under global warming,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1555, pp. 3247–3260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Parmesan, “Influences of species, latitudes and methodologies on estimates of phenological response to global warming,” Global Change Biology, vol. 13, no. 9, pp. 1860–1872, 2007. View at Publisher · View at Google Scholar · View at Scopus