About this Journal Submit a Manuscript Table of Contents
Journal of Biophysics
Volume 2011 (2011), Article ID 414729, 10 pages
http://dx.doi.org/10.1155/2011/414729
Review Article

Mechanisms of Cellular Uptake of Cell-Penetrating Peptides

1Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
2Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
3Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

Received 24 November 2010; Accepted 24 January 2011

Academic Editor: Eaton Edward Lattman

Copyright © 2011 Fatemeh Madani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Järver and Ü. Langel, “Cell-penetrating peptides—a brief introduction,” Biochimica et Biophysica Acta, vol. 1758, no. 3, pp. 260–263, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. El-Andaloussi, T. Holm, and Ü. Langel, “Cell-penetrating peptides: mechanisms and applications,” Current Pharmaceutical Design, vol. 11, no. 28, pp. 3597–3611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Green and P. M. Loewenstein, “Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein,” Cell, vol. 55, no. 6, pp. 1179–1188, 1988. View at Scopus
  4. E. Vivès, P. Brodin, and B. Lebleu, “A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus,” Journal of Biological Chemistry, vol. 272, no. 25, pp. 16010–16017, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Joliot, C. Pernelle, H. Deagostini-Bazin, and A. Prochiantz, “Antennapedia homeobox peptide regulates neural morphogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 5, pp. 1864–1868, 1991. View at Scopus
  6. A. H. Joliot, A. Triller, M. Volovitch, C. Pernelle, and A. Prochiantz, “α-2,8-polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide,” New Biologist, vol. 3, no. 11, pp. 1121–1134, 1991. View at Scopus
  7. D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz, “The third helix of the Antennapedia homeodomain translocates through biological membranes,” Journal of Biological Chemistry, vol. 269, no. 14, pp. 10444–10450, 1994. View at Scopus
  8. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz, “Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent,” Journal of Biological Chemistry, vol. 271, no. 30, pp. 18188–18193, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Nakase, H. Hirose, G. Tanaka et al., “Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis,” Molecular Therapy, vol. 17, no. 11, pp. 1868–1876, 2009. View at Publisher · View at Google Scholar · View at PubMed
  10. T. Hessa, H. Kim, K. Bihlmaier et al., “Recognition of transmembrane helices by the endoplasmic reticulum translocon,” Nature, vol. 433, no. 7024, pp. 377–381, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. S. Futaki, T. Suzuki, W. Ohashi et al., “Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5836–5840, 2001. View at Publisher · View at Google Scholar · View at PubMed
  12. P. E. G. Thorén, D. Persson, P. Isakson, M. Goksör, A. Önfelt, and B. Nordén, “Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells,” Biochemical and Biophysical Research Communications, vol. 307, no. 1, pp. 100–107, 2003. View at Publisher · View at Google Scholar
  13. A. Elmquist, M. Lindgren, T. Bartfai, and Ü. Langel, “Ve-cadherin-derived cell-penetrating peptide, pVEC with carrier functions,” Experimental Cell Research, vol. 269, no. 2, pp. 237–244, 2001. View at Publisher · View at Google Scholar · View at PubMed
  14. S. El-Andaloussi, H. J. Johansson, T. Holm, and Ü. Langel, “A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids,” Molecular Therapy, vol. 15, no. 10, pp. 1820–1826, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. U. Soomets, M. Lindgren, X. Gallet et al., “Deletion analogues of transportan,” Biochimica et Biophysica Acta, vol. 1467, no. 1, pp. 165–176, 2000. View at Publisher · View at Google Scholar
  16. M. Zorko and Ü. Langel, “Cell-penetrating peptides: mechanism and kinetics of cargo delivery,” Advanced Drug Delivery Reviews, vol. 57, no. 4, pp. 529–545, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Ziegler, “Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans,” Advanced Drug Delivery Reviews, vol. 60, no. 4-5, pp. 580–597, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Pooga, M. Hällbrink, M. Zorko, and Ü. Langel, “Cell penetration by transportan,” FASEB Journal, vol. 12, no. 1, pp. 67–77, 1998. View at Scopus
  19. M. Magzoub and A. Gräslund, “Cell-penetrating peptides: from inception to application,” Quarterly Reviews of Biophysics, vol. 37, no. 2, pp. 147–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Avrahami and Y. Shai, “Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action,” Biochemistry, vol. 42, no. 50, pp. 14946–14956, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. P. Richard, K. Melikov, E. Vives et al., “Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 585–590, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. S. Wadia, R. V. Stan, and S. F. Dowdy, “Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis,” Nature Medicine, vol. 10, no. 3, pp. 310–315, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. Z. Dominski and R. Kole, “Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8673–8677, 1993. View at Scopus
  24. S. H. Kang, M. J. Cho, and R. Kole, “Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development,” Biochemistry, vol. 37, no. 18, pp. 6235–6239, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. Ü. Langel, Cell-Penetrating Peptides: Processes and Applications, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2006.
  26. I. M. Kaplan, J. S. Wadia, and S. F. Dowdy, “Erratum: Cationic TAT peptide transduction domain enters cells by macropinocytosis (Journal of Controlled Release (2005) 102 (247–253) DOI: 10.1016/j.jconrel.2004.10.018),” Journal of Controlled Release, vol. 107, no. 3, pp. 571–572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Vercauteren, R. E. Vandenbroucke, A. T. Jones et al., “The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls,” Molecular Therapy, vol. 18, no. 3, pp. 561–569, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. B. Sieczkarski and G. R. Whittaker, “Dissecting virus entry via endocytosis,” Journal of General Virology, vol. 83, no. 7, pp. 1535–1545, 2002. View at Scopus
  29. S. Sandgren, F. Cheng, and M. Belting, “Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide: role for cell-surface proteoglycans,” Journal of Biological Chemistry, vol. 277, no. 41, pp. 38877–38883, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. Ohkuma and B. Poole, “Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 7, pp. 3327–3331, 1978. View at Scopus
  31. M. Wibo and B. Poole, “Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B,” Journal of Cell Biology, vol. 63, no. 2, pp. 430–440, 1974. View at Scopus
  32. T. Takeuchi, M. Kosuge, A. Tadokoro et al., “Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate,” ACS Chemical Biology, vol. 1, no. 5, pp. 299–303, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. F. Perret, M. Nishihara, T. Takeuchi et al., “Anionic fullerenes, calixarenes, coronenes, and pyrenes as activators of oligo/polyarginines in model membranes and live cells,” Journal of the American Chemical Society, vol. 127, no. 4, pp. 1114–1115, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. N. Sakai, T. Takeuchi, S. Futaki, and S. Matile, “Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes,” ChemBioChem, vol. 6, no. 1, pp. 114–122, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. Nishihara, F. Perret, T. Takeuchi et al., “Arginine magic with new counterions up the sleeve,” Organic and Biomolecular Chemistry, vol. 3, no. 9, pp. 1659–1669, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. K. Matsuzaki, S. Yoneyama, O. Murase, and K. Miyajima, “Transbilayer transport of ions and lipids coupled with mastoparan X translocation,” Biochemistry, vol. 35, no. 25, pp. 8450–8456, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, and Y. Shai, “Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes,” Biochemistry, vol. 31, no. 49, pp. 12416–12423, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. M. T. Lee, W. C. Hung, F. Y. Chen, and H. W. Huang, “Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation,” Biophysical Journal, vol. 89, no. 6, pp. 4006–4016, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, and P. A. Wender, “Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells,” Journal of the American Chemical Society, vol. 126, no. 31, pp. 9506–9507, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. F. Duchardt, M. Fotin-Mleczek, H. Schwarz, R. Fischer, and R. Brock, “A comprehensive model for the cellular uptake of cationic cell-penetrating peptides,” Traffic, vol. 8, no. 7, pp. 848–866, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. Kosuge, T. Takeuchi, I. Nakase, A. T. Jones, and S. Futaki, “Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans,” Bioconjugate Chemistry, vol. 19, no. 3, pp. 656–664, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Deshayes, M. C. Morris, G. Divita, and F. Heitz, “Interactions of amphipathic CPPs with model membranes,” Biochimica et Biophysica Acta, vol. 1758, no. 3, pp. 328–335, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. D. Derossi, G. Chassaing, and A. Prochiantz, “Trojan peptides: the penetratin system for intracellular delivery,” Trends in Cell Biology, vol. 8, no. 2, pp. 84–87, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. A. T. Jones, “Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides,” Journal of Cellular and Molecular Medicine, vol. 11, no. 4, pp. 670–684, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. Mayor and R. E. Pagano, “Pathways of clathrin-independent endocytosis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 8, pp. 603–612, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. Lundberg and M. Johansson, “Is VP22 nuclear homing an artifact?” Nature Biotechnology, vol. 19, no. 8, pp. 713–714, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. D. J. Mitchell, L. Steinman, D. T. Kim, C. G. Fathman, and J. B. Rothbard, “Polyarginine enters cells more efficiently than other polycationic homopolymers,” Journal of Peptide Research, vol. 56, no. 5, pp. 318–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Elmquist, M. Hansen, and Ü. Langel, “Structure-activity relationship study of the cell-penetrating peptide pVEC,” Biochimica et Biophysica Acta, vol. 1758, no. 6, pp. 721–729, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. E. G. Thorén, D. Persson, E. K. Esbjörner, M. Goksör, P. Lincoln, and B. Nordén, “Membrane binding and translocation of cell-penetrating peptides,” Biochemistry, vol. 43, no. 12, pp. 3471–3489, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard, “The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13003–13008, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. J. Mueller, I. Kretzschmar, R. Volkmer, and P. Boisguerin, “Comparison of cellular uptake using 22 CPPs in 4 different cell lines,” Bioconjugate Chemistry, vol. 19, no. 12, pp. 2363–2374, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. G. Tünnemann, R. M. Martin, S. Haupt, C. Patsch, F. Edenhofer, and M. C. Cardoso, “Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells,” FASEB Journal, vol. 20, no. 11, pp. 1775–1784, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. R. Fischer, T. Waizenegger, K. Köhler, and R. Brock, “A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import,” Biochimica et Biophysica Acta, vol. 1564, no. 2, pp. 365–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Lundberg, S. El-Andaloussi, T. Sütlü, H. Johansson, and Ü. Langel, “Delivery of short interfering RNA using endosomolytic cell-penetrating peptides,” FASEB Journal, vol. 21, no. 11, pp. 2664–2671, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. G. P. H. Dietz and M. Bähr, “Delivery of bioactive molecules into the cell: the Trojan horse approach,” Molecular and Cellular Neuroscience, vol. 27, no. 2, pp. 85–131, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. P. Guterstam, F. Madani, H. Hirose et al., “Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate,” Biochimica et Biophysica Acta, vol. 1788, no. 12, pp. 2509–2517, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. Säälik, A. Elmquist, M. Hansen et al., “Protein cargo delivery properties of cell-penetrating peptides. A comparative study,” Bioconjugate Chemistry, vol. 15, no. 6, pp. 1246–1253, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. J. P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu, and L. V. Chernomordik, “Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors,” Journal of Biological Chemistry, vol. 280, no. 15, pp. 15300–15306, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. A. Fittipaldi, A. Ferrari, M. Zoppé et al., “Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 34141–34149, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. I. Nakase, M. Niwa, T. Takeuchi et al., “Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement,” Molecular Therapy, vol. 10, no. 6, pp. 1011–1022, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. El-Andaloussi, H. J. Johansson, P. Lundberg, and Ü. Langel, “Induction of splice correction by cell-penetrating peptide nucleic acids,” Journal of Gene Medicine, vol. 8, no. 10, pp. 1262–1273, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Tyagi, M. Rusnati, M. Presta, and M. Giacca, “Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans,” Journal of Biological Chemistry, vol. 276, no. 5, pp. 3254–3261, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. Ishihara, “Heparan sulfate proteoglycans are receptors for extracellular HIV-1 Tat internalization,” Trends in Glycoscience and Glycotechnology, vol. 13, no. 72, pp. 433–434, 2001.
  64. M. Rusnati, G. Tulipano, C. Urbinati et al., “The basic domain in HIV-1 tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists,” Journal of Biological Chemistry, vol. 273, no. 26, pp. 16027–16037, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Padari, P. Säälik, M. Hansen et al., “Cell transduction pathways of transportans,” Bioconjugate Chemistry, vol. 16, no. 6, pp. 1399–1410, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. E. Bárány-Wallje, J. Gaur, P. Lundberg, Ü. Langel, and A. Gräslund, “Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo,” FEBS Letters, vol. 581, no. 13, pp. 2389–2393, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. Z. Marinova, V. Vukojević, S. Surcheva et al., “Translocation of dynorphin neuropeptides across the plasma membrane: a putative mechanism of signal transmission,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26360–26370, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. C. Chavkin, I. F. James, and A. Goldstein, “Dynorphin is a specific endogenous ligand of the κ opioid receptor,” Science, vol. 215, no. 4531, pp. 413–415, 1982. View at Scopus
  69. A. Kuzmin, N. Madjid, L. Terenius, S. O. Ögren, and G. Bakalkin, “Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice,” Neuropsychopharmacology, vol. 31, no. 9, pp. 1928–1937, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13363–13383, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Magzoub, S. Sandgren, P. Lundberg et al., “N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis,” Biochemical and Biophysical Research Communications, vol. 348, no. 2, pp. 379–385, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. K. Löfgren, A. Wahlström, P. Lundberg, Ü. Langel, A. Gräslund, and K. Bedecs, “Antiprion properties of prion protein-derived cell-penetrating peptides,” FASEB Journal, vol. 22, no. 7, pp. 2177–2184, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. R. Lande, J. Gregorio, V. Facchinetti, et al., “Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide,” Nature, vol. 449, no. 7162, pp. 564–569, 2007.
  74. S. Sandgren, A. Wittrup, F. Cheng et al., “The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17951–17956, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. X. Zhang, K. Oglęcka, S. Sandgren et al., “Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery,” Biochimica et Biophysica Acta, vol. 1798, no. 12, pp. 2201–2208, 2010. View at Publisher · View at Google Scholar · View at PubMed
  76. M. R. Yeaman and N. Y. Yount, “Mechanisms of antimicrobial peptide action and resistance,” Pharmacological Reviews, vol. 55, no. 1, pp. 27–55, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. A. Izadpanah and R. L. Gallo, “Antimicrobial peptides,” Journal of the American Academy of Dermatology, vol. 52, no. 3, pp. 381–392, 2005. View at Scopus
  78. P. F. Almeida and A. Pokorny, “Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics,” Biochemistry, vol. 48, no. 34, pp. 8083–8093, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. S. Console, C. Marty, C. García-Echeverría, R. Schwendener, and K. Ballmer-Hofer, “Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans,” Journal of Biological Chemistry, vol. 278, no. 37, pp. 35109–35114, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. D. Wade, A. Boman, B. Wahlin et al., “All-D amino acid-containing channel-forming antibiotic peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4761–4765, 1990. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Shai, “Mode of action of membrane active antimicrobial peptides,” Biopolymers, vol. 66, no. 4, pp. 236–248, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. N. Nekhotiaeva, A. Elmquist, G. K. Rajarao, M. Hällbrink, Ü. Langel, and L. Good, “Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides,” FASEB Journal, vol. 18, no. 2, pp. 394–396, 2004. View at Scopus
  83. S. T. Henriques, M. N. Melo, and M. A. R. B. Castanho, “Cell-penetrating peptides and antimicrobial peptides: how different are they?” Biochemical Journal, vol. 399, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus