About this Journal Submit a Manuscript Table of Contents
Journal of Blood Transfusion
Volume 2012 (2012), Article ID 568132, 5 pages
http://dx.doi.org/10.1155/2012/568132
Review Article

Potential Uses of Cord Blood in Cardiac Surgery

Department of Cardiothoracic Surgery, Pediatric, and Adult Congenital Cardiac Surgery, NYU Langone Medical Center, 530 First Avenue, Suite 9V, New York, NY 10016, USA

Received 14 November 2011; Accepted 30 January 2012

Academic Editor: Niranjan Bhattacharya

Copyright © 2012 Ralph S. Mosca. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics-2011 update: a report from the American Heart Association,” Circulation, vol. 123, pp. e18–e209, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. J. Marelli, A. S. Mackie, R. Ionescu-Ittu, E. Rahme, and L. Pilote, “Congenital heart disease in the general population: changing prevalence and age distribution,” Circulation, vol. 115, no. 2, pp. 163–172, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. A. Thomson, J. Itskovity-Eldor, S. S. Shapiro, et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Scopus
  4. B. Blum and N. Benvenisty, “The tumorigenicity of human embryonic stem cells,” Advances in Cancer Research, vol. 100, pp. 133–158, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. E. C. Hayden, “Stem cells: the growing pains of pluripotency,” Nature, vol. 473, no. 7347, pp. 272–274, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. M. F. Pera, “Stem cells: the dark side of induced pluripotency,” Nature, vol. 471, no. 7336, pp. 46–47, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. C. van de Ven, D. Collins, M. B. Bradley, E. Morris, and M. S. Cairo, “The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration,” Experimental Hematology, vol. 35, no. 12, pp. 1753–1765, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. G. Kogler, S. Sensken, J. A. Airey et al., “A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 123–135, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. Armstrong, W. A. Schroeder, and W. D. Fenninger, “A comparison of the percentage of fetal hemoglobin in human umbilical cord blood as determined by chromatography and by alkali denaturation,” Blood, vol. 22, pp. 554–565, 1963. View at Scopus
  10. N. Bhattacharya, K. M. Mukherjee, M. K. Cheterri, et al., “A study of 174 units of placenta umbilical cord whole blood transfusion in 62 patients as rich source of fetal Hemoblogin supply in different indications of blood transfusion,” Clinical & Experimental Obstetrics & Gynecology, vol. 28, no. 1, pp. 47–52, 2001.
  11. H. Eichler, T. Schaible, E. Richter et al., “Cord blood as a source of autologous RBCs for transfusion to preterm infants,” Transfusion, vol. 40, no. 9, pp. 1111–1117, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. G. N. Bazuaye, M. D. Enosolease, and O. A. Awodu, “Cord Blood Transfusion: an alternative to adult blood transfusion,” World Journal of Medical Sciences, vol. 4, no. 2, pp. 151–155, 2009.
  13. M. Jansen, A. Brand, J. von Lindern, S. Scherjon, and F. J. Walther, “Potential use of autologous umbilical cord blood red blood cells for early transfusion needs of premature infants,” Transfusion, vol. 46, no. 6, pp. 1049–1056, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. T. Taguchi, S. Suita, M. Nakamura et al., “The efficacy of autologous cord-blood transfusions in neonatal surgical patients,” Journal of Pediatric Surgery, vol. 38, no. 4, pp. 604–607, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. O. Fedevych, K. Chasovskyi, G. Vorobiova et al., “Open cardiac surgery in the first hours of life using autologous umbilical cord blood,” European Journal of Cardio Thoracic Surgery, vol. 40, no. 4, pp. 985–989, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. E. Partridge, E. Mayer-Davis, R. L. Sacco, and A. J. Balch, “Creating a 21st century global health agenda: the general assembly of the united nations high level meeting on non-communicable diseases,” Circulation, vol. 123, no. 25, pp. 3012–3014, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. D. T. Harris, M. Badowski, N. Ahmad, and M. A. Gaballa, “The potential of cord blood stem cells for use in regenerative medicine,” Expert Opinion on Biological Therapy, vol. 7, no. 9, pp. 1311–1322, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. K. Li, J. ZQ, R. D. Weisel et al., “Cardiomyocyte transplantation improves heart function,” Annals of Thoracic Surgery, vol. 62, no. 3, pp. 654–660, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Orlic, J. Kajstura, S. Chimenti et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, vol. 410, no. 6829, pp. 701–705, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. H. Tang, P. W. Fedak, T. M. Yau et al., “Cell transplantation to improve ventricular function in the failing heart,” European Journal of Cardio Thoracic Surgery, vol. 23, no. 6, pp. 907–916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Menasche, A. A. Hagege, M. Scorsin et al., “Myoblast transplantation for heart failure,” The Lancet, vol. 357, no. 9252, pp. 279–280, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. T. Siminiak, R. Kalawski, D. Fiszer et al., “Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up,” American Heart Journal, vol. 148, no. 3, pp. 531–537, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. P. Menasche, O. Alfieri, S. Janssens et al., “The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation,” Circulation, vol. 117, no. 9, pp. 1189–1200, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Bel, E. Messas, O. Agbulut et al., “Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution,” Circulation, vol. 108, no. 10, supplement 1, pp. II247–II252, 2003. View at Scopus
  25. C. Stamm, H. D. Kleine, Y. H. Choi et al., “Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 3, pp. 717–725, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. H. Reinecke and C. E. Murry, “Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 3, pp. 251–253, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. L. Formigli, A. M. Perna, E. Meacci et al., “Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodelling,” Journal of Cellular and Molecular Medicine, vol. 11, no. 5, pp. 1087–1100, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. P. W. Fedak, P. E. Szmitko, R. E. Weisel et al., “Cell transplantation preserves matrix homeostasis: a novel paracrine mechanism,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 5, pp. 1430–1439, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. Uemura, M. Xu, N. Ahmad, and M. Ashraf, “Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling,” Circulation Research, vol. 98, no. 11, pp. 1414–1421, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. R. F. Gillum, “Epidemiology of congenital heart disease in the United States,” American Heart Journal, vol. 127, no. 4, pp. 919–927, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. World Health Organization, 2011, http://www.who.int/gho/publications/world_health_statistics/EN_WHS2011_TOC.pdf.
  32. R. Hopkins, “Cardiac surgeon's primer: tissue-engineered cardiac valves,” Seminars in Thoracic and Cardiovascular Surgery, pp. 125–136, 2007. View at Scopus
  33. F. Fontan, J. W. Kirklin, G. Fernandez et al., “Outcome after a “perfect” Fontan operation,” Circulation, vol. 81, no. 5, pp. 1520–1536, 1990. View at Scopus
  34. N. Hibino, E. McGillicuddy, G. Matsumura et al., “Late-term results of tissue-engineered vascular grafts in humans,” Journal of Thoracic and Cardiovascular Surgery, vol. 139, no. 2, pp. 431–436, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. A. Warnes, R. G. Williams, T. M. Bashore et al., “ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American college of cardiology/american heart association task force on practice guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease),” Circulation, vol. 118, no. 23, pp. e714–e833, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Yerebakan, E. Sandica, S. Prietz et al., “Autologous umbilical cord blood mononuclear cell transplantation preserves right ventricular function in a novel model of chronic right ventricular volume overload,” Cell Transplantation, vol. 18, no. 8, pp. 855–868, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. N. Barker, S. M. Davies, T. DeFor, N. K. C. Ramsay, D. J. Weisdorf, and J. E. Wagner, “Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen-matched unrelated donor bone marrow: results of a matched-pair analysis,” Blood, vol. 97, no. 10, pp. 2957–2961, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. J. N. Barker, D. J. Weisdorf, T. E. DeFor et al., “Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy,” Blood, vol. 105, no. 3, pp. 1343–1347, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. O. Hassall, G. Bedu-Addo, M. Adarkwa, K. Danso, and I. Bates, “Umbilical-cord blood for transfusion in children with severe anaemia in under-resourced countries,” The Lancet, vol. 361, no. 9358, pp. 678–679, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Robinson, T. Niu, M. de Lima, et al., “Ex vivo expansion of umbilical cord blood,” Blood, vol. 7, pp. 243–250, 2005.
  41. A. Giorgetti, N. Montserrat, T. Aasen et al., “Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2,” Cell Stem Cell, vol. 5, no. 4, pp. 353–357, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus