About this Journal Submit a Manuscript Table of Contents
Journal of Catalysts
Volume 2013 (2013), Article ID 276210, 12 pages
http://dx.doi.org/10.1155/2013/276210
Research Article

Hybrid Polymer-Immobilized Nanosized Pd Catalysts for Hydrogenation Reaction Obtained via Frontal Polymerization

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Academician Semenov Avenue, 1, Russia

Received 27 August 2012; Accepted 2 November 2012

Academic Editor: Mohammed M. Bettahar

Copyright © 2013 Anatolii D. Pomogailo and Gulzhian I. Dzhardimalieva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Pomogailo and V. N. Kestelman, Metallopolymer Nanocomposites, Springer, Heidelberg, Germany, 2005.
  2. A. D. Pomogailo, “Catalysis by heterogenized metal polymers: advances and prospects,” Kinetics and Catalysis, vol. 45, no. 1, pp. 61–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Wohrle and A. D. Pomogailo, Metal Complexes and Metals in Macromolecules, Wiley-VCH, Weinheim, Germany, 2003.
  4. J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, and A. A. Romero, “Sustainable preparation of supported metal nanoparticles and their applications in catalysis,” ChemSusChem, vol. 2, no. 1, pp. 18–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, New York, NY, USA, 1985.
  6. C. M. Andersson, K. Karabelas, A. Hallberg, and C. Andersson, “Palladium/phosphinated polystyrene as a catalyst in the heck arylation. A comparative study,” Journal of Organic Chemistry, vol. 50, no. 20, pp. 3891–3895, 1985. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ogasawar and S. Kato, “Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions,” Journal of the American Chemical Society, vol. 132, no. 13, pp. 4608–4613, 2010. View at Publisher · View at Google Scholar
  8. M. Hirai, N. I. Yakaru, Y. Seta, and S. Hodosima, “Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst,” Reactive and Functional Polymers, vol. 37, no. 1–3, pp. 121–131, 1998. View at Publisher · View at Google Scholar
  9. A. A. Belyi, L. G. Chigladze, A. L. Rusanov et al., “Effect of the nature of the polymeric carrier on the catalytic activity of palladium-polyheteroarylene catalysts in hydrogenation reactions,” Bulletin of the Academy of Sciences of the USSR, vol. 36, no. 10, pp. 1995–1999, 1987. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kidambi, J. Dai, J. Li, and M. L. Bruening, “Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers,” Journal of the American Chemical Society, vol. 126, no. 9, pp. 2658–2659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. F. D. Bellamy and K. Ou, “Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium,” Tetrahedron Letters, vol. 25, no. 8, pp. 839–842, 1984. View at Publisher · View at Google Scholar
  12. V. V. Rozhkov, S. A. Shevelev, I. I. Chervin, A. R. Mitchell, and R. D. Schmidt, “Direct amination of 1-substituted 3,5-dinitrobenzenes by 1,1,1-trimethylhydrazinium iodide,” Journal of Organic Chemistry, vol. 68, no. 6, pp. 2498–2501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. B. van Gelder, J. K. Damhof, P. J. Kroijenga, and K. R. Westerterp, “Three-phase packed bed reactor with an evaporating solvent-I. Experimental: the hydrogenation of 2,4,6-trinitrotoluene in methanol,” Chemical Engineering Science, vol. 45, no. 10, pp. 3159–3170, 1990. View at Scopus
  14. L. G. Simonova, V. V. Barelko, A. V. Toktarev et al., “Catalysts based on fiberglass supports: III. Properties of supported metals (Pt and Pd) according to electron-microscopic and XPS data,” Kinetics and Catalysis, vol. 42, no. 6, pp. 837–846, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. S. V. Belyaev, E. F. Vainshtein, and M. V. Kluev, “Effect of the polymeric matrix of a catalyst on its activity in hydrogenation,” Kinetics and Catalysis, vol. 43, no. 2, pp. 245–248, 2002. View at Publisher · View at Google Scholar
  16. A. Alonso, A. Shafir, J. Macanás, A. Vallribera, M. Munoz, and D. N. Muraviev, “Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants,” Catalysis Today, vol. 193, no. 1, pp. 200–206, 2012. View at Publisher · View at Google Scholar
  17. A. D. Pomogailo, G. I. Dzhardimalieva, A. S. Rozenberg, and D. N. Muraviev, “Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix,” Journal of Nanoparticle Research, vol. 5, no. 5-6, pp. 497–519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. G. I. Dzhardimalieva, A. D. Pomogailo, A. S. Rozenberg, and M. Leonowicz, “Magnetic metallopolymer nanocomposites,” in Magnetic Nanoparticles, S. P. Gubin, Ed., chapter 3, Wiley, 2009.
  19. V. S. Savostyanov, V. I. Ponomarev, A. D. Pomogailo et al., “Preparation and reactivity of metal-containing monomers,” Bulletin of the Academy of Sciences of the USSR, vol. 39, no. 4, pp. 674–679, 1990. View at Publisher · View at Google Scholar
  20. A. D. Pomogailo and G. I. Dzhardimalieva, “Frontal polymerization of metal-containing monomers: achievements and problems,” Polymer Science A, vol. 46, no. 3, pp. 250–263, 2004.
  21. T. Shi and L. I. Elding, “Kinetics and mechanism for formation of olefin complexes in the reaction between palladium(II) and maleic acid,” Inorganic Chemistry, vol. 37, no. 21, pp. 5544–5549, 1998. View at Scopus
  22. G. I. Dzhardimalieva, A. D. Pomogailo, and V. A. Volpert, “Frontal polymerization of metal-containing monomers: a topical review,” Journal of Inorganic and Organometallic Polymers, vol. 12, no. 1-2, pp. 1–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Okitsu, A. Yue, S. Tunabe, and H. Matsumoto, “Formation of palladium nanoclusters on Y-zeolite via a sonochemical process and conventional methods,” Bulletin of the Chemical Society of Japan, vol. 75, no. 3, pp. 449–455, 2002. View at Publisher · View at Google Scholar
  24. D. I. Fortenberry and J. A. Pojman, “Solvent-free synthesis of polyacrylamide by frontal polymerization,” Journal of Polymer Science A, vol. 38, no. 7, pp. 1129–1135, 2000. View at Scopus
  25. V. V. Barelko, A. D. Pomogailo, G. I. Dzhardimalieva, S. I. Evstratova, A. S. Rozenberg, and I. E. Uflyand, “The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices,” Chaos, vol. 9, no. 2, pp. 342–347, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. S. I. Pomogailo, V. G. Dorokhov, A. M. Lyakhovich, S. S. Mikhailova, G. I. Dzhardimalieva, and A. D. Pomogailo, “Synthesis, structure, and catalytic properties of polymer-immobilized rhodium clusters,” Kinetics and Catalysis, vol. 47, no. 5, pp. 719–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kidambi, J. Dai, J. Li, and M. L. Bruening, “Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers,” Journal of the American Chemical Society, vol. 126, no. 9, pp. 2658–2659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Jiang and Q. Gao, “Heterogeneous hydrogenation catalyses over recyclable Pd(0) nanoparticle catalysts stabilized by PAMAM-SBA-15 organic−inorganic hybrid composites,” Journal of the American Chemical Society, vol. 128, no. 3, pp. 716–717, 2006. View at Publisher · View at Google Scholar
  29. E. F. Litvin and V. Z. Sharf, “Catalytic hydrogenation of trinitrotoluene,” Mendeleev Chemistry Journal, vol. 44, p. 90, 2000.
  30. H. J. Janssen, A. J. Kruithof, G. J. Steghuis, and K. R. Westerterp, “Kinetics of the catalytic hydrogenation of 2,4-dinitrotoluene. 2. Modeling of the reaction rates and catalyst activity,” Industrial & Engineering Chemistry Research, vol. 29, no. 9, pp. 1822–1829, 1990. View at Scopus
  31. G. Neri, M. G. Musolino, C. Milone, A. M. Visco, and A. Di Mario, “Mechanism of 2,4-dinitrotoluene hydrogenation over Pd/C,” Journal of Molecular Catalysis A, vol. 95, no. 3, pp. 235–241, 1995. View at Scopus
  32. W. Chuntiag, V. G. Dorokhov, G. A. Boiko, B. S. Bal'zhinimaev, and V. V. Barelko, “Characteristic features of the selective action of platinum-doped glass fiber woven catalysts in the liquid-phase reduction of polyfunctional aromatic nitro compounds,” Doklady Chemistry, vol. 402, no. 4–6, pp. 111–113, 2005. View at Publisher · View at Google Scholar · View at Scopus