About this Journal Submit a Manuscript Table of Contents
Journal of Cancer Epidemiology
Volume 2013 (2013), Article ID 754815, 13 pages
http://dx.doi.org/10.1155/2013/754815
Research Article

Body Fat and Breast Cancer Risk in Postmenopausal Women: A Longitudinal Study

1Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
2Karmanos Cancer Center, Department of Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
3Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
4Department of Social and Preventive Medicine, University at Buffalo, Buffalo, NY 14214, USA
5Department of Public Health Sciences, University of California Davis, Davis, CA 95616, USA
6Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA
7Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27127, USA

Received 19 February 2013; Revised 14 March 2013; Accepted 14 March 2013

Academic Editor: P. Vineis

Copyright © 2013 Thomas E. Rohan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Khandekar, P. Cohen, and B. M. Spiegelman, “Molecular mechanisms of cancer development in obesity,” Nature Reviews Cancer, vol. 11, no. 12, pp. 886–895, 2011.
  2. B. H. Goodpaster, “Measuring body fat distribution and content in humans,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 5, no. 5, pp. 481–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. O. Okorodudu, M. F. Jumean, V. M. Montori et al., “Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis,” International Journal of Obesity, vol. 34, no. 5, pp. 791–799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Rinaldi, T. J. Key, P. H. M. Peeters et al., “Anthropometric measures, endogenous sex steroids and breast cancer risk in postmenopausal women: a study within the EPIC cohort,” International Journal of Cancer, vol. 118, no. 11, pp. 2832–2839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Tehard, P. H. Lahmann, E. Riboli, and F. Clavel-Chapelon, “Anthropometry, breast cancer and menopausal status: use of repeated measurements over 10 years of follow-up—results of the French E3N women's cohort study,” International Journal of Cancer, vol. 111, no. 2, pp. 264–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Van Den Brandt, D. Spiegelman, S. S. Yaun et al., “Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk,” American Journal of Epidemiology, vol. 152, no. 6, pp. 514–527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. R. M. Blew, L. B. Sardinha, L. A. Milliken et al., “Assessing the validity of body mass index standards in early postmenopausal women,” Obesity Research, vol. 10, no. 8, pp. 799–808, 2002. View at Scopus
  8. F. B. Hu, “Measurements of adiposity and body composition,” in Obesity Epidemiology, F. B. Hu, Ed., pp. 53–83, Oxford University Press, New York, NY, USA, 2008.
  9. C. M. Phillips, A. C. Tierney, P. Perez-Martinez, et al., “Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype,” Obesity, 2012. View at Publisher · View at Google Scholar
  10. C. L. Carty, C. Kooperberg, M. L. Neuhouser et al., “Low-fat dietary pattern and change in body-composition traits in the Women's Health Initiative Dietary Modification Trial,” American Journal of Clinical Nutrition, vol. 93, no. 3, pp. 516–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. D. Jackson, A. Z. Lacroix, J. A. Cauley, and J. Mcgowan, “The Women's Health Initiative calcium-vitamin D trial: overview and baseline characteristics of participants,” Annals of Epidemiology, vol. 13, no. 9, pp. S98–S106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Anderson, S. Cummings, L. S. Freedman et al., “Design of the Women's Health Initiative clinical trial and observational study,” Controlled Clinical Trials, vol. 19, no. 1, pp. 61–109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Langer, E. White, C. E. Lewis, J. M. Kotchen, S. L. Hendrix, and M. Trevisan, “The Women's Health Initiative observational study: baseline characteristics of participants and reliability of baseline measures,” Annals of Epidemiology, vol. 13, no. 9, pp. S107–S121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. McTiernan, C. Kooperberg, E. White et al., “Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women's Health Initiative Cohort Study,” Journal of the American Medical Association, vol. 290, no. 10, pp. 1331–1336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. D. Curb, A. Mctiernan, S. R. Heckbert et al., “Outcomes ascertainment and adjudication methods in the Women's Health Initiative,” Annals of Epidemiology, vol. 13, supplement 9, pp. S122–S128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. H. Gail, “Evaluating serial cancer marker studies in patients at risk of recurrent disease,” Biometrics, vol. 37, no. 1, pp. 67–78, 1981. View at Scopus
  17. M. J. Penciana and R. B. D'Agostino, “Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation,” Statistics in Medicine, vol. 23, no. 13, pp. 2109–2123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros.cfm#survival.
  19. B. V. Howard, J. E. Manson, M. L. Stefanick et al., “Low-fat dietary pattern and weight change over 7 years: the Women's Health Initiative Dietary Modification Trial,” Journal of the American Medical Association, vol. 295, no. 1, pp. 39–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Chen, T. Bassford, S. B. Green et al., “Postmenopausal hormone therapy and body composition—a substudy of the estrogen plus progestin trial of the Women's Health Initiative,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 651–656, 2005. View at Scopus
  21. M. A. Bredella, R. H. Ghomi, B. J. Thomas et al., “Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa,” Obesity, vol. 18, no. 11, pp. 2227–2233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. LaForgia, J. Dollman, M. J. Dale, R. T. Withers, and A. M. Hill, “Validation of DXA body composition estimates in obese men and women,” Obesity, vol. 17, no. 4, pp. 821–826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Woodrow, “Body composition analysis techniques in the aged adult: indications and limitations,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 12, no. 1, pp. 8–14, 2009.
  24. M. B. Snijder, M. Visser, J. M. Dekker et al., “The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry,” International Journal of Obesity and Related Metabolic Disorders, vol. 26, no. 7, pp. 984–993, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. V. Schapira, N. B. Kumar, G. H. Lyman, and C. E. Cox, “Abdominal obesity and breast cancer risk,” Annals of Internal Medicine, vol. 112, no. 3, pp. 182–186, 1990. View at Scopus
  26. R. Ballard-Barbash, A. Schatzkin, C. L. Carter et al., “Body fat distribution and breast cancer in the Framingham Study,” Journal of the National Cancer Institute, vol. 82, no. 4, pp. 286–290, 1990. View at Scopus
  27. E. E. Krebs, B. C. Taylor, J. A. Cauley, K. L. Stone, P. J. Bowman, and K. E. Ensrud, “Measures of adiposity and risk of breast cancer in older postmenopausal women,” Journal of the American Geriatrics Society, vol. 54, no. 1, pp. 63–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. H. Lahmann, L. Lissner, B. Gullberg, H. Olsson, and G. Berglund, “A prospective study of adiposity and postmenopausal breast cancer risk: the Malmö diet and cancer study,” International Journal of Cancer, vol. 103, no. 2, pp. 246–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. R. J. MacInnis, D. R. English, D. M. Gertig, J. L. Hopper, and G. G. Giles, “Body size and composition and risk of postmenopausal breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 12, pp. 2117–2125, 2004. View at Scopus
  30. G. Sun, C. R. French, G. R. Martin et al., “Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population,” American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 74–78, 2005. View at Scopus
  31. W. Y. Chen and G. A. Colditz, “Risk factors and hormone-receptor status: epidemiology, risk-prediction models and treatment implications for breast cancer,” Nature Clinical Practice Oncology, vol. 4, no. 7, pp. 415–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Suzuki, N. Orsini, S. Saji, T. J. Key, and A. Wolk, “Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—A meta-analysis,” International Journal of Cancer, vol. 124, no. 3, pp. 698–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. Gunter, D. R. Hoover, H. Yu et al., “Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women,” Journal of the National Cancer Institute, vol. 101, no. 1, pp. 48–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Hartz, T. He, and A. Rimm, “Comparison of adiposity measures as risk factors in postmenopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 1, pp. 227–233, 2012.
  35. L. M. Morimoto, E. White, Z. Chen et al., “Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States),” Cancer Causes and Control, vol. 13, no. 8, pp. 741–751, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. E. M. Evans, D. A. Rowe, S. B. Racette, K. M. Ross, and E. McAuley, “Is the current BMI obesity classification appropriate for black and white postmenopausal women?” International Journal of Obesity, vol. 30, no. 5, pp. 837–843, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. K. M. Flegal, J. A. Shepherd, A. C. Looker et al., “Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults,” American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 500–508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Romero-Corral, V. K. Somers, J. Sierra-Johnson et al., “Accuracy of body mass index in diagnosing obesity in the adult general population,” International Journal of Obesity, vol. 32, no. 6, pp. 959–966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Wang, X. H. Hou, M. L. Zhang et al., “Comparison of body mass index with body fat percentage in the evaluation of obesity in Chinese,” Biomedical and Environmental Sciences, vol. 23, no. 3, pp. 173–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. L. Clasey, C. Bouchard, C. D. Teates et al., “The use of anthropometric and dual-energy X-ray absorptiometry (DXA) measures to estimate total abdominal and abdominal visceral fat in men and women,” Obesity Research, vol. 7, no. 3, pp. 256–264, 1999. View at Scopus
  41. E. G. Kamel, G. McNeill, T. S. Han et al., “Measurement of abdominal fat by magnetic resonance imaging, dual-energy X-ray absorptiometry and anthropometry in non-obese men and women,” International Journal of Obesity and Related Metabolic Disorders, vol. 23, no. 7, pp. 686–692, 1999. View at Scopus
  42. T. V. Barreira, A. E. Staiano, D. M. Harrington, et al., “Anthropometric correlates of total body fat, abdominal adiposity, and cardiovascular disease risk factors in a biracial sample of men and women,” Mayo Clinic Proceedings, vol. 87, no. 5, pp. 452–460, 2012. View at Publisher · View at Google Scholar
  43. J. Gomez-Ambrosi, C. Silva, J. C. Galofré, et al., “Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity,” International Journal of Obesity, vol. 36, no. 2, pp. 286–294, 2012. View at Publisher · View at Google Scholar
  44. A. Romero-Corral, V. K. Somers, J. Sierra-Johnson et al., “Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality,” European Heart Journal, vol. 31, no. 6, pp. 737–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. G. C. Kabat, M. Kim, R. T. Chlebowski et al., “A longitudinal study of the metabolic syndrome and risk of postmenopausal breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 7, pp. 2046–2053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. K. A. Brown and E. R. Simpson, “Obesity and breast cancer: progress to understanding the relationship,” Cancer Research, vol. 70, no. 1, pp. 4–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. E. Calle and R. Kaaks, “Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms,” Nature Reviews Cancer, vol. 4, no. 8, pp. 579–591, 2004. View at Scopus
  48. D. L. Roberts, C. Dive, and A. G. Renehan, “Biological mechanisms linking obesity and cancer risk: new perspectives,” Annual Review of Medicine, vol. 61, pp. 301–316, 2010. View at Publisher · View at Google Scholar · View at Scopus