About this Journal Submit a Manuscript Table of Contents
Journal of Ceramics
Volume 2013 (2013), Article ID 134169, 8 pages
http://dx.doi.org/10.1155/2013/134169
Research Article

The use of Waste Materials in Utility Poles, Crossarms, Paver, and Reef Balls Concrete Structures: Advantages and Care

1Instituto de Tecnologia para o Desenvolvimento, CP 19067, 81531-980 Curitiba, PR, Brazil
2PIPE, UFPR, Centro Politécnico, Jardim das Américas, 81531-980 Curitiba, PR, Brazil
3PRODETEC, Instituto de Tecnologia para o Desenvolvimento, CP 19067, 81531-980 Curitiba, PR, Brazil
4PGERHA, UFPR, Centro Politécnico, Jardim das Américas, 81531-980 Curitiba, PR, Brazil

Received 3 October 2012; Revised 19 December 2012; Accepted 20 December 2012

Academic Editor: Young-Wook Kim

Copyright © 2013 Kleber Franke Portella et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Mehta and P. J. M. Monteiro, Concreto: Estrutura, Propriedades e Materiais, PINI, São Paulo, Brazil, 1994.
  2. V. M. John, Reciclagem de resíduos na construção civil: contribuição à metodologia de pesquisa e desenvolvimento [thesis], Universidade de São Paulo, Sao Paulo, Brazil, 2000.
  3. C. Hoppen, K. F. Portella, A. Joukoski, E. M. Trindade, and C. V. Andreóli, “The use of centrifuged sludge from a water treatment plant (WTP) in portland cement concrete matrices for reducingthe environmental impact,” Química Nova, vol. 29, no. 1, pp. 79–84, 2006.
  4. C. V. G. Filho, Metodologia para a gestão diferenciada de resíduos da construção civil urbana: estudo de gestão ambiental de rejeitos de pneus [Dissertation], PRODETEC, Ribeirão Preto, Brazil, 2007.
  5. J. B. M. do Carmo and K. F. Portella, “Estudo comparativo do desempenho mecânico da sílica ativa e do metacaulim como adições químicas minerais em estruturas de concreto,” Cerâmica, vol. 54, no. 331, pp. 309–318, 2008. View at Publisher · View at Google Scholar
  6. J. M. R. Dotto, A. G. de Abreu, D. C. C. dal Molin, and I. L. Müller, “Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars,” Cement and Concrete Composites, vol. 26, no. 1, pp. 31–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Magrinho, F. Didelet, and V. Semiao, “Municipal solid waste disposal in Portugal,” Waste Management, vol. 26, no. 12, pp. 1477–1489, 2002. View at Scopus
  8. J. R. Pan, C. Huang, J. J. Kuo, and S. H. Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement,” Waste Management, vol. 28, no. 7, pp. 1113–1118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. L. Reis dos and M. A. G. Jurumenh, “Experimental investigation on the effects of recycled aggregate on fracture behavior of polymer concrete,” Materials Research, vol. 14, no. 3, pp. 326–330, 2011. View at Publisher · View at Google Scholar
  10. M. Safiuddin, U. J. Alengaram, M. A. Salam, M. Z. Jumaat, F. F. Jaafar, and H. B. Saad, “Properties of high-workability concrete with recycled concrete aggregate,” Materials Research, vol. 14, no. 2, pp. 248–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. American Society for Testing and Materials (ASTM), “Standard test method for ‘potential alkali reactivity of aggregates (mortar-bar method)’,” ASTM C1260, EUA. ASTM, Philadelphia, Pa, USA, 1994.
  12. K. F. Portella, A. Joukoski, R. Franck, and R. Derksen, “Secondary recycling of electrical insulator porcelain waste in Portland concrete structures: determination of the performance under accelerated aging,” Cerâmica, vol. 52, no. 323, pp. 155–167, 2006. View at Scopus
  13. C. Freitas, J. C. A. Galvão, K. F. Portella, A. Joukoski, C. V. G. Filho, and E. S. Ferreira, “Physicochemical and mechanical performance of portland cement concrete with recycled styrene-butadiene tyre-rubber waste,” Química Nova, vol. 32, pp. 913–918, 2009. View at Publisher · View at Google Scholar
  14. American Society for Testing and Materials (ASTM), “Standard test method for ‘compressive strength of cylindrical concrete specimens’,” ASTM C39/C39M, EUA. ASTM, Philadelphia, Pa, USA, 1999.
  15. American Society for Testing and Materials (ASTM), “Standard test method for ‘flexural strength of concrete (using simple beam with third-point loading)’,” ASTM C78, EUA. ASTM, Philadelphia, Pa, USA, 1994.
  16. American Society for Testing and Materials (ASTM), “Standard test method for ‘abrasion resistance of concrete (underwater method)’,” ASTM C1138, EUA. ASTM, Philadelphia, Pa, USA, 1997.
  17. Associação Brasileira de Normas Técnicas (ABNT), “Postes de concreto armado para redes de distribuição de energia elétrica—Especificação,” ABNT NBR 8451, NBR, Brazil, 1985.
  18. American Society for Testing and Materials (ASTM), “Standard test method for ‘half cells potentials of uncoated reinforcing steel in concrete’,” ASTM C876, EUA. ASTM, Philadelphia, Pa, USA, 1991.
  19. A. Joukoski, K. F. Portella, O. Baron et al., “The influence of cement type and admixture on life span of reinforced concrete utility poles subjected to the high salinity environment of Northeastern Brazil, studied by corrosion potential testing,” Cerâmica, vol. 50, no. 313, pp. 12–20, 2004. View at Publisher · View at Google Scholar
  20. A. M. Neville and S. E. Giammusso, Propriedades do Concreto, PINI, São Paulo, Brazil, 2nd edition, 1997.
  21. Recifes artificiais marinhos: uma proposta de conservação da biodiversidade e desenvolvimento da pesca artesanal, http://www.brasilmergulho.com.br/port/artigos/2003/002.shtml.
  22. K. M. Dooley, C. F. Knopf, and R. P. Gambrell, pH-neutral concrete for attached microalgae and enhanced carbon dioxide fixation DE-AC26-98FT40411-01, Department of Energy, Louisiana State University, 1998.