About this Journal Submit a Manuscript Table of Contents
Journal of Ceramics
Volume 2013 (2013), Article ID 214974, 9 pages
http://dx.doi.org/10.1155/2013/214974
Research Article

Mineral-Oxide-Doped Aluminum Titanate Ceramics with Improved Thermomechanical Properties

1Center for Ceramic Processing, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, India
2School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India

Received 31 May 2012; Accepted 10 July 2012

Academic Editor: Zhenxing Yue

Copyright © 2013 R. Papitha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Nagano, S. Nagashima, H. Maeda, and A. Kato, “Sintering behavior of Al2TiO5 base ceramics and their thermal properties,” Ceramics International, vol. 25, no. 8, pp. 681–687, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Bruno, A. M. Efremov, B. R. Wheaton, and J. E. Webb, “Microcrack orientation in porous aluminum titanate,” Acta Materialia, vol. 58, no. 20, pp. 6649–6655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Naghizadeh, H. R. Rezaie, and F. Golestani-fard, “The influence of composition, cooling rate and atmosphere on the synthesis and thermal stability of aluminum titanate,” Materials Science and Engineering B, vol. 157, no. 1–3, pp. 20–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Hamano, Y. Ohya, and Z. E. Nakagawa, “Crack propagation resistance of aluminium titanate ceramics,” International Journal of High Technology Ceramics, vol. 1, no. 2, pp. 129–137, 1985. View at Scopus
  5. H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” Journal of the European Ceramic Society, vol. 27, no. 2-3, pp. 1431–1434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. X. Huang and A. M. R. Senos, “Effect of the powder precursor characteristics in the reaction sintering of aluminum titanate,” Materials Research Bulletin, vol. 37, no. 1, pp. 99–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Bruno, A. Efremov, B. Wheaton, I. Bobrikov, V. G. Simkin, and S. Misture, “Micro- and macroscopic thermal expansion of stabilized aluminum titanate,” Journal of the European Ceramic Society, vol. 30, no. 12, pp. 2555–2562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Chen and H. Awaji, “Temperature dependence of mechanical properties of aluminum titanate ceramics,” Journal of the European Ceramic Society, vol. 27, no. 1, pp. 13–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Morosin and R. W. Lynch, “Structure studies on Al2TiO5 at room temperature and at 600°C,” Acta Crystallographica B, vol. 28, pp. 1040–1046, 1972.
  10. R. D. Skala, D. Li, and I. M. Low, “Diffraction, structure and phase stability studies on aluminium titanate,” Journal of the European Ceramic Society, vol. 29, no. 1, pp. 67–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Durán, H. Wohlfromm, and P. Pena, “Study of the behaviour of Al2TiO5 materials in reducing atmosphere by spectroscopic techniques,” Journal of the European Ceramic Society, vol. 13, no. 1, pp. 73–80, 1994. View at Scopus
  12. I. M. Low, Z. Oo, and B. H. O'Connor, “Effect of atmospheres on the thermal stability of aluminium titanate,” Physica B, vol. 385-386, pp. 502–504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Buscaglia, P. Nanni, G. Battilana, G. Aliprandi, and C. Carry, “Reaction sintering of aluminium titanate: i-effect of MgO addition,” Journal of the European Ceramic Society, vol. 13, no. 5, pp. 411–417, 1994. View at Scopus
  14. A. Yoleva, S. Djambazo, D. Arseno, and V. Hristo, “Effect of SiO2 addition on thermal hysteresis of aluminum titanate,” Journal of University of Chemical Technology and Metallurgy, vol. 45, no. 3, pp. 269–274, 2010.
  15. H. A. J. Thomas, R. Stevens, and E. Gilbart, “Effect of zirconia additions on the reaction sintering of aluminium titanate,” Journal of Materials Science, vol. 26, no. 13, pp. 3613–3616, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Korim, “Effect of Mg2+- and Fe3+-ions on formation mechanism of aluminium titanate,” Ceramics International, vol. 35, no. 4, pp. 1671–1675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lan, C. Xiao-Yan, H. Guo-Ming, and M. Yu, “Effect of additives on properties of aluminium titanate ceramics,” Transactions of Nonferrous Metals Society of China, vol. 21, no. 7, pp. 1574–1579, 2011.
  18. I. J. Kim, K. S. Lee, and G. Cao, “Low thermal expansion behavior of ZrTiO4-Al2TiO5 ceramics having high thermal durability between 750 and 1400°c,” Key Engineering Materials, vol. 22, pp. 2627–2632, 2002. View at Scopus
  19. L. Giordano, M. Viviani, C. Bottino, M. T. Buscaglia, V. Buscaglia, and P. Nanni, “Microstructure and thermal expansion of Al2TiO5-MgTi2O5 solid solutions obtained by reaction sintering,” Journal of the European Ceramic Society, vol. 22, no. 11, pp. 1811–1822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Shimada, M. Mizuno, K. Katou et al., “Aluminum titanate-tetragonal zirconia composite with low thermal expansion and high strength simultaneously,” Solid State Ionics, vol. 101–103, no. 1, pp. 1127–1133, 1997. View at Scopus
  21. P. Oikonomou, C. Dedeloudis, C. J. Stournaras, and C. Ftikos, “Stabilized tialite-mullite composites with low thermal expansion and high strength for catalytic converters,” Journal of the European Ceramic Society, vol. 27, no. 12, pp. 3475–3482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Tsetsekou, “A comparison study of tialite ceramics doped with various materials and tialite-mullite composites: microstructural, thermal and mechanical properties,” Journal of the European Ceramic Society, vol. 25, no. 4, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. F. H. Perera, A. Pajares, and J. J. Meléndez, “Strength of aluminium titanate/mullite composites containing thermal stabilizers,” Journal of the European Ceramic Society, vol. 31, no. 9, pp. 1695–1701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. G. Shi and I. M. Low, “Use of spodumene for liquid-phase-sintering of aluminium titanate,” Materials Letters, vol. 36, no. 1–4, pp. 118–122, 1998. View at Scopus
  25. C. G. Shi and I. M. Low, “Effect of spodumene additions on the sintering and densification of aluminum titanate,” Materials Research Bulletin, vol. 33, no. 6, pp. 817–824, 1998. View at Scopus