About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 127847, 9 pages
http://dx.doi.org/10.1155/2013/127847
Research Article

Validated Spectrophotometric Methods for Simultaneous Determination of Food Colorants and Sweeteners

Department of Chemistry, Faculty of Science and Art, Yıldız Technical University, 34220 Istanbul, Turkey

Received 30 November 2012; Accepted 14 January 2013

Academic Editor: Ghada M. Hadad

Copyright © 2013 Fatma Turak and Mahmure Ustun Ozgur. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Vidotti, W. F. Costa, and C. C. Oliveira, “Development of a green chromatographic method for determination of colorants in food samples,” Talanta, vol. 68, no. 3, pp. 516–521, 2006. View at Publisher · View at Google Scholar
  2. G. J. Kapadia, H. Tokuda, R. Sridhar et al., “Cancer chemopreventive activity of synthetic colorants used in foods, pharmaceuticals and cosmetic preparations,” Cancer Letters, vol. 129, no. 1, pp. 87–95, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Rus, C. Gherman, V. Miclǎuş, A. Mihalca, and G. C. Nadǎş, “Comparative toxicity of food dyes on liver and kidney in guinea pigs: a histopathological study,” Annals of the Romanian Society for Cell Biology, vol. 15, no. 1, pp. 161–165, 2010.
  4. E. C. Vidotti, J. C. Cancino, C. C. Oliveira, and M. D. C. E. Rollemberg, “Simultaneous determination of food dyes by first derivative spectrophotometry with sorption onto polyurethane foam,” Analytical Sciences, vol. 21, no. 2, pp. 149–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Pourreza and S. Elhami, “Cloud point extraction and spectrophotometric determination of amaranth in food samples using nonionic surfactant Triton X-100 and tetrabutylammonium hydrogen sulfate,” Journal of the Iranian Chemical Society, vol. 6, no. 4, pp. 784–788, 2009. View at Scopus
  6. N. Pourreza and M. Ghomi, “Simultaneous cloud point extraction and spectrophotometric determination of carmoisine and brilliant blue FCF in food samples,” Talanta, vol. 84, no. 1, pp. 240–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Li, Z.-T. Jiang, and R.-X. Wang, “Solid phase extraction combined direct spectrophotometric determination of brilliant blue in food using β-cyclodextrin polymer,” Food Analytical Methods, vol. 2, no. 4, pp. 264–270, 2009. View at Publisher · View at Google Scholar
  8. A. S. Nateri and E. Ekrami, “Quantitative analysis of bicomponent dye solutions by derivative spectrophotometry,” Pigment and Resin Technology, vol. 38, no. 1, pp. 43–48, 2009. View at Publisher · View at Google Scholar
  9. M. Kucharska and J. Grabka, “A review of chromatographic methods for determination of synthetic food dyes,” Talanta, vol. 80, no. 3, pp. 1045–1051, 2010. View at Publisher · View at Google Scholar
  10. N. Yoshioka and K. Ichihashi, “Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection,” Talanta, vol. 74, no. 5, pp. 1408–1413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Minioti, C. F. Sakellariou, and N. S. Thomaidis, “Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector,” Analytica Chimica Acta, vol. 583, no. 1, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Vachirapatama, J. Mahajaroensiri, and W. Visessanguan, “Identification and determination of seven synthetic dyes in foodstuffs and soft drinks on monolithic C18 column by high performance liquid chromatography,” Journal of Food and Drug Analysis, vol. 16, no. 5, pp. 77–82, 2008. View at Scopus
  13. M. C. Boyce, “Determination of additives in food by capillary electrophoresis,” Electrophoresis, vol. 22, no. 8, pp. 1447–1459, 2001. View at Publisher · View at Google Scholar
  14. S. Chanlon, L. Joly-Pottuz, M. Chatelut, O. Vittori, and J. L. Cretier, “Determination of carmoisine, allura red and ponceau 4R in sweets and soft drinks by differential pulse polarography,” Journal of Food Composition and Analysis, vol. 18, no. 6, pp. 503–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. H. Alghamdi, H. M. Alshammery, M. A. Abdalla, and A. F. Alghamdi, “Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry,” Journal of AOAC International, vol. 92, no. 5, pp. 1454–1459, 2009. View at Scopus
  16. N. E. Llamas, M. Garrido, M. S. D. Nezio, and B. S. F. Band, “Second order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV-vis and multivariate curve resolution-alternating least squares,” Analytica Chimica Acta, vol. 655, no. 1-2, pp. 38–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Lachenmeier and W. Kessler, “Multivariate curve resolution of spectrophotometric data for the determination of artificial food colors,” Journal of Agricultural and Food Chemistry, vol. 56, no. 14, pp. 5463–5468, 2008. View at Publisher · View at Google Scholar
  18. Y. S. Al-Degsa, A. H. El-Sheikha, M. A. Al-Ghoutib, and M. S. Sunjuka, “Determination of commercial colorants in different water bodies using partial least squares regression (PLS) A Chemometric Study,” Jordan Journal of Chemistry, vol. 3, no. 3, pp. 321–336, 2008.
  19. Y. Ni, Y. Wang, and S. Kokot, “Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics,” Talanta, vol. 78, no. 2, pp. 432–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. R. Whitehouse, J. Boullata, and L. A. McCauley, “The potential toxicity of artificial sweeteners,” AAOHN Journal, vol. 56, no. 6, pp. 251–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Wasik, J. McCourt, and M. Buchgraber, “Simultaneous determination of nine intense sweeteners in foodstuffs by high performance liquid chromatography and evaporative light scattering detection-Development and single-laboratory validation,” Journal of Chromatography A, vol. 1157, no. 1-2, pp. 187–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Yang and B. Chen, “Simultaneous determination of nonnutritive sweeteners in foods by HPLC/ESI-MS,” Journal of Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3022–3027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Serdar and Z. Knežević, “Determination of artificial sweeteners in beverages and special nutritional products using high performance liquid chromatography,” Arhiv za Higijenu Rada i Toksikologiju, vol. 62, no. 2, pp. 169–173, 2011. View at Publisher · View at Google Scholar
  24. A. Zygler, A. Wasik, A. Kot-Wasik, and J. Namieśnik, “Determination of nine high-intensity sweeteners in various foods by high-performance liquid chromatography with mass spectrometric detection,” Analytical and Bioanalytical Chemistry, vol. 400, no. 7, pp. 2159–2172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Zhu, Y. Guo, M. Ye, and F. S. James, “Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography,” Journal of Chromatography A, vol. 1085, no. 1, pp. 143–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Herrmannová, L. Křivánková, M. Bartoš, and K. Vytřas, “Direct simultaneous determination of eight sweeteners in foods by capillary isotachophoresis,” Journal of Separation Science, vol. 29, no. 8, pp. 1132–1137, 2006. View at Publisher · View at Google Scholar
  27. S. Armenta, S. Garrigues, and M. De La Guardia, “Sweeteners determination in table top formulations using FT-Raman spectrometry and chemometric analysis,” Analytica Chimica Acta, vol. 521, no. 2, pp. 149–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Cantarelli, R. G. Pellerano, E. J. Marchevsky, and J. M. Camiña, “Simultaneous determination of saccharin and aspartame in commercial noncaloric sweeteners using the PLS-2 multivariate calibration method and validation by capillary electrophoresis,” Journal of Agricultural and Food Chemistry, vol. 56, no. 20, pp. 9345–9349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Ni, W. Xiao, and S. Kokot, “A differential kinetic spectrophotometric method for determination of three sulphanilamide artificial sweeteners with the aid of chemometrics,” Food Chemistry, vol. 113, no. 4, pp. 1339–1345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. E. Llamas, M. S. Di Nezio, and M. E. Palomeque, “Direct determination of saccharin and acesulfame-K in sweeteners and fruit juices powders,” Food Analytical Methods, vol. 1, no. 1, pp. 43–48, 2008.
  31. A. Zygler, A. Wasik, and J. Namieśnik, “Analytical methodologies for determination of artificial sweeteners in foodstuffs,” Trends in Analytical Chemistry, vol. 28, no. 9, pp. 1082–1102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Şentürk, N. Erk, S. A. Özkan, C. Akay, and S. Cevheroglu, “Analysis of theophylline and ephedrine hydrochloride in tablets by ratio-spectra derivative spectrophotometry and LC,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 1-2, pp. 291–298, 2002.
  33. F. Salinas, J. J. B. Nevado, and A. E. Mansilla, “A new spectrophotometric method for quantitative multicomponent analysis resolution of mixtures of salicylic and salicyluric acids,” Talanta, vol. 37, no. 3, pp. 347–351, 1990. View at Scopus
  34. S. Saraf, “Various UV spectrophotometric simultaneous estimation methods,” Pharmainfo.net. Latest Reviews, vol. 4, no. 2, 2006.
  35. H. N. Dave, R. C. Mashru, and A. R. Thakkar, “Simultaneous determination of salbutamol sulphate, bromhexine hydrochloride and etofylline in pharmaceutical formulations with the use of four rapid derivative spectrophotometric methods,” Analytica Chimica Acta, vol. 597, no. 1, pp. 113–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. I. Walash, M. S. Rizk, Z. A. Sheribah, and M. M. Salim, “Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin,” Chemistry Central Journal, vol. 5, no. 1, pp. 85–95, 2011.
  37. Megazyme International Ireland Ltd, “Aspartame assay procedure 01/05,” 2004, http://www.megazyme.com.