About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 248534, 9 pages
http://dx.doi.org/10.1155/2013/248534
Research Article

Evaluation of Electronic Effects in the Solvolyses of p-Methylphenyl and p-Chlorophenyl Chlorothionoformate Esters

1Department of Chemistry, Wesley College, 120 N. State Street, Dover, DE 19901-3875, USA
2Department of Chemistry and Biochemistry, Northern IL University, DeKalb, IL 60115-2862, USA

Received 15 June 2012; Accepted 27 June 2012

Academic Editor: Theocharis C. Stamatatos

Copyright © 2013 Malcolm J. D’Souza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. R. Barton, P. Blundell, J. Dorchak, D. O. Jang, and J. C. Jaszberenyi, “The invention of radical reactions. Part XXI. Simple methods for the radical deoxygenation of primary alcohols,” Tetrahedron, vol. 47, no. 43, pp. 8969–8984, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Subhas Bose and P. Ravinder Goud, “Aryl chlorothionoformate: a new versatile reagent for the preparation of nitriles and isonitriles under mild conditions,” Tetrahedron Letters, vol. 40, no. 4, pp. 747–748, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Rahmathullah, J. E. Hall, B. C. Bender, D. R. McCurdy, R. R. Tidwell, and D. W. Boykin, “Prodrugs for amidines: synthesis and anti-Pneumocystis carinii activity of carbamates of 2,5-bis(4-amidinophenyl)furan,” Journal of Medicinal Chemistry, vol. 42, no. 19, pp. 3994–4000, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Albores-Velasco, J. Thorne, and R. L. Wain, “Fungicidal activity of phenyl N-(4-substituted-phenyl)thionocarbamates,” Journal of Agricultural and Food Chemistry, vol. 43, no. 8, pp. 2260–2261, 1995. View at Scopus
  5. M. A. H. Zahran, T. A. R. Salem, R. M. Samaka, H. S. Agwa, and A. R. Awad, “Design, synthesis and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against Ehrlich ascites carcinoma-induced solid tumor in Swiss albino mice,” Bioorganic and Medicinal Chemistry, vol. 16, no. 22, pp. 9708–9718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. McKinnon and A. Queen, “Kinetics and mechanism for the hydrolysis of chlorothionoformates and chlorodithioformate esters in water and aqueous acetone,” Canadian Journal of Chemistry, vol. 50, pp. 1401–1406, 1972.
  7. S. La, K. S. Koh, and I. Lee, “Nucleophilic substitution at a carbonyl carbon atom (XI). Solvolysis of methyl chloroformate and its thioanalogues in methanol, ethanol and ethanol-water mixtures,” Journal of the Korean Chemical Society, vol. 24, no. 1, pp. 1–7, 1980.
  8. S. La, K. S. Koh, and I. Lee, “Nucleophilic substitution at a carbonyl carbon atom (XII). Solvolysis of methyl chloroformate and its thioanalogues in CH3CN-H2O and CH3COCH3-H2O mixtures,” Journal of the Korean Chemical Society, vol. 24, no. 1, pp. 8–14, 1980.
  9. I. S. Koo, K. Yang, D. H. Kang, H. J. Park, K. Kang, and I. Lee, “Transition-state variation in the solvolyses of phenyl chlorothionoformate in alcohol-water mixtures,” Bulletin of the Korean Chemical Society, vol. 20, no. 5, pp. 577–580, 1999. View at Scopus
  10. H. K. Oh, J. S. Ha, D. D. Sung, and I. Lee, “Aminolysis of aryl chlorothionoformates with anilines in acetonitrile: effects of amine nature and solvent on the mechanism,” Journal of Organic Chemistry, vol. 69, no. 24, pp. 8219–8223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. A. Castro, M. Cubillos, and J. G. Santos, “Kinetics and mechanism of the aminolysis of phenyl and 2-nitrophenyl chlorothionoformates,” Journal of Organic Chemistry, vol. 62, no. 13, pp. 4395–4397, 1997. View at Scopus
  12. E. A. Castro, “Kinetics and mechanisms of reactions of thiol, thiono, and dithio analogues of carboxylic esters with nucleophilies,” Chemical Reviews, vol. 99, no. 12, pp. 3505–3524, 1999. View at Scopus
  13. E. A. Castro, M. Cubillos, and J. G. Santos, “Kinetics and mechanisms of the pyridinolysis of phenyl and 4-nitrophenyl chlorothionoformates formation and hydrolysis of 1-(aryloxythiocarbonyl) pyridinium cations,” Journal of Organic Chemistry, vol. 69, no. 14, pp. 4802–4807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. A. Castro, M. Aliaga, P. R. Campodonico, J. R. Leis, L. García-Río, and J. G. Santos, “Reactions of aryl chlorothionoformates with quinuclidines. A kinetic study,” Journal of Physical Organic Chemistry, vol. 21, no. 2, pp. 102–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Castro, “Kinetics and mechanisms of reactions of thiol, thiono and dithio analogues of carboxylic esters with nucleophiles. An update,” Journal of Sulfur Chemistry, vol. 28, no. 4, pp. 407–435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. A. Castro, M. Gazitúa, and J. G. Santos, “Kinetics and mechanism of the reactions of aryl chlorodithioformates with pyridines and secondary alicyclic amines,” Journal of Physical Organic Chemistry, vol. 22, no. 11, pp. 1030–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. A. Castromaria Cubillos and J. G. Santos, “Concerted mechanisms of the reactions of phenyl and 4-nitrophenyl chlorothionoformates with substituted phenoxide ions,” Journal of Organic Chemistry, vol. 63, no. 20, pp. 6820–6823, 1998. View at Scopus
  18. D. N. Kevill and M. J. D'Souza, “Sixty years of the Grunwald-Winstein equation: development and recent applications,” Journal of Chemical Research, no. 2, pp. 61–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. N. Kevill and S. W. Anderson, “An improved scale of solvent nucleophilicity based on the solvolysis of the S-methyldibenzothiophenium ion,” Journal of Organic Chemistry, vol. 56, no. 5, pp. 1845–1850, 1991. View at Scopus
  20. D. N. Kevill, “Development and uses of scales of solvent nucleophilicity,” in Advances in Quantitative Structure-Property Relationships, M. Charton, Ed., vol. 1, pp. 81–115, JAI Press, Greenwich, Conn, USA, 1996.
  21. T. W. Bentley and G. E. Carter, “The SN2-SN1 spectrum. 4. The SN2 (intermediate) mechanism for solvolyses of tert-butyl chloride: a revised Y scale of solvent ionizing power based on solvolyses of 1-adamantyl chloride,” Journal of the American Chemical Society, vol. 104, no. 21, pp. 5741–5747, 1982. View at Scopus
  22. T. W. Bentley and G. Llewellyn, “Yx scales of solvent ionizing power,” Progress Physical Organic Chemistry, vol. 17, pp. 121–158, 1990.
  23. D. N. Kevill and M. J. D’Souza, “Additional YCl values and the correlation of the specific rates of solvolysis of tert-butyl chloride in terms of NT and YCl scales,” Journal of Chemical Research, no. 5, pp. 174–175, 1993.
  24. S. Winstein, E. Grunwald, and H. Walter Jones, “The correlation of solvolysis rates and the classification of solvolysis reactions into mechanistic categories,” Journal of the American Chemical Society, vol. 73, no. 6, pp. 2700–2707, 1951. View at Scopus
  25. D. N. Kevill and M. J. D'Souza, “Correlation of the rates of solvolysis of phenyl chloroformate,” Journal of the Chemical Society, no. 9, pp. 1721–1724, 1997. View at Scopus
  26. D. N. Kevill, F. Koyoshi, and M. J. D'Souza, “Correlations of the specific rates of solvolysis of aromatic carbamoyl chlorides, chloroformates, chlorothionoformates, and chlorodithioformates revisited,” International Journal of Molecular Sciences, vol. 8, no. 4, pp. 346–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. N. Kevill and M. J. D'Souza, “Correlation of the rates of solvolysis of phenyl chlorothionoformate and phenyl chlorodithioformate,” Canadian Journal of Chemistry, vol. 77, no. 5-6, pp. 1118–1122, 1999. View at Scopus
  28. D. N. Kevill, M. W. Bond, and M. J. D'Souza, “Dual pathways in the solvolyses of phenyl chlorothioformate,” Journal of Organic Chemistry, vol. 62, no. 22, pp. 7869–7871, 1997. View at Scopus
  29. M. J. D'Souza, K. E. Shuman, S. E. Carter, and D. N. Kevill, “Extended Grunwald-Winstein analysis—LFER used to gauge solvent effects in p-nitrophenyl chloroformate solvolysis,” International Journal of Molecular Sciences, vol. 9, no. 11, pp. 2231–2242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. D'Souza, D. N. Reed, K. J. Erdman, J. B. Kyong, and D. N. Kevill, “Grunwald-winstein analysis—isopropyl chloroformate solvolysis revisited,” International Journal of Molecular Sciences, vol. 10, no. 3, pp. 862–879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. D'Souza, S. M. Hailey, and D. N. Kevil, “Use of empirical correlations to determine solvent effects in the solvolysis of S-methyl chlorothioformate,” International Journal of Molecular Sciences, vol. 11, no. 5, pp. 2253–2266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. J. Koh, S. J. Kang, and D. N. Kevill, “Kinetic studies of the solvolyses of 2,2,2-trichloro-1,1-dimethylethyl chloroformate,” Bulletin of the Korean Chemical Society, vol. 31, no. 4, pp. 835–839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. D'Souza, B. P. Mahon, and D. N. Kevill, “Analysis of the nucleophilic solvation effects in isopropyl chlorothioformate solvolysis,” International Journal of Molecular Sciences, vol. 11, no. 7, pp. 2597–2611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. D'Souza, S. E. Carter, and D. N. Kevill, “Correlation of the rates of solvolysis of neopentyl chloroformate-A recommended protecting agent,” International Journal of Molecular Sciences, vol. 12, no. 2, pp. 1161–1174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. D. H. Moon, M. H. Seong, J. B. Kyong, Y. Lee, and Y. W. Lee, “Correlation of the rates of solvolysis of 1- and 2-Naphthyl chloroformates using the extended grunwald-winstein equation,” Bulletin of the Korean Chemical Society, vol. 32, no. 7, pp. 2413–2417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. D’Souza, A. M. Darrington, and D. N. Kevill, “A study of solvent effects in the solvolysis of propargyl chloroformate,” ISRN Organic Chemistry, vol. 2011, Article ID 7671411, 6 pages, 2011. View at Publisher · View at Google Scholar
  37. H. J. Koh and S. J. Kang, “A kinetic study on solvolysis of 9-fluorenylmethyl chloroformate,” Bulletin of the Korean Chemical Society, vol. 32, no. 10, pp. 3799–3801, 2011.
  38. M. J. D'Souza, M. J. McAneny, D. N. Kevill, J. B. Kyong, and S. H. Choi, “Kinetic evaluation of the solvolysis of isobutyl chloro-and chlorothioformate esters,” Beilstein Journal of Organic Chemistry, vol. 7, pp. 543–552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. D’Souza, K. E. Shuman, A. O. Omondi, and D. N. Kevill, “Detailed analysis for the solvolysis of isopropenyl chloroformate,” European Journal of Chemistry, vol. 2, no. 2, pp. 130–135, 2011.
  40. M. J. D’Souza, S. M. Hailey, B. P. Mahon, and D. N. Kevill, “Understanding solvent effects in the solvolysis of 4-fluorophenyl chlorothionoformate,” Chemical Sciences Journal, vol. CSJ-35, pp. 1–9, 2011.
  41. H. J. Koh and S. J. Kang, “Correlation of the rates on solvolysis of 2,2,2-trichloroethyl chloroformate using the extended grunwald-winstein equation,” Bulletin of the Korean Chemical Society, vol. 33, no. 5, pp. 1729–1733, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. D'Souza, J. A. Knapp, G. A. Fernandez-Bueno, and D. N. Kevill, “Use of linear free energy relationships (LFERS) to elucidate the mechanisms of reaction of a γ-methyl-β-alkynyl and an ortho-infstituted aryl chloroformate ester,” International Journal of Molecular Sciences, vol. 13, no. 1, pp. 665–682, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. J. B. Kyong, Y. Lee, M. J. D’Souza, B. P. Mahon, and D. N. Kevill, “Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism,” European Journal of Chemistry. In press.
  44. D. N. Kevill and M. J. D'Souza, “Correlation of the rates of solvolysis of benzoyl chloride and derivatives using extended forms of the Grunwald-Winstein equation,” Journal of Physical Organic Chemistry, vol. 15, no. 12, pp. 881–888, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. T. W. Bentley and I. S. Koo, “Concurrent pathways to explain solvent and substituent effects for solvolyses of benzoyl chlorides in ethanol-trifluoroethanol mixtures,” Arkivoc, vol. 2012, no. 7, pp. 25–34, 2012. View at Scopus
  46. T. W. Bentley and H. C. Harris, “Solvolyses of benzoyl chlorides in weakly nucleophilic media,” International Journal of Molecular Sciences, vol. 12, no. 8, pp. 4805–4818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. T. W. Bentley, “Structural effects on the solvolytic reactivity of carboxylic and sulfonic acid chlorides. Comparisons with gas-phase data for cation formation,” Journal of Organic Chemistry, vol. 73, no. 16, pp. 6251–6257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J. B. Kyong, B. C. Park, C. B. Kim, and D. N. Kevill, “Rate and product studies with benzyl and p-nitrobenzyl chloroformates under solvolytic conditions,” Journal of Organic Chemistry, vol. 65, no. 23, pp. 8051–8058, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. S. H. Choi, M. H. Seong, Y. W. Lee, J. B. Kyong, and D. N. Kevill, “Correlation of the rates of solvolysis of phenyl fluorothionoformate,” Bulletin of the Korean Chemical Society, vol. 32, no. 4, pp. 1268–1272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. K. H. Yew, H. J. Koh, H. W. Lee, and I. Lee, “Nucleophilic substitution reactions of phenyl chloroformates,” Journal of the Chemical Society, no. 12, pp. 2263–2268, 1995. View at Scopus
  51. S. K. An, J. S. Yang, J. M. Cho et al., “Correlation of the rates of solvolysis of phenyl chlorodithioformate,” Bulletin of the Korean Chemical Society, vol. 23, no. 10, pp. 1445–1450, 2002. View at Scopus
  52. C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley-Interscience, New York, NY, USA, 1979.
  53. T. W. Bentley and M. S. Garley, “Correlations and predictions of solvent effects on reactivity: some limitations of multi-parameter equations and comparisons with similarity models based on one solvent parameter,” Journal of Physical Organic Chemistry, vol. 19, no. 6, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. D. Markel, “The power of a statistical test. What does insignificance mean?” Veterinary Surgery, vol. 20, no. 3, pp. 209–214, 1991. View at Scopus
  55. T. W. Bentley and H. C. Harris, “Separation of mass law and solvent effects in kinetics of solvolyses of p-nitrobenzoyl chloride in aqueous binary mixtures,” Journal of Organic Chemistry, vol. 53, no. 4, pp. 724–728, 1988. View at Scopus
  56. T. W. Bentley, H. C. Harris, Z. H. Ryu, G. T. Lim, D. D. Sung, and S. R. Szajda, “Mechanisms of solvolyses of acid chlorides and chloroformates. Chloroacetyl and phenylacetyl chloride as similarity models,” Journal of Organic Chemistry, vol. 70, no. 22, pp. 8963–8970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. D. N. Kevill and M. H. Abduljaber, “Correlation of the rates of solvolysis of cyclopropylcarbinyl and cyclobutyl bromides using the extended Grunwald-Winstein equation,” Journal of Organic Chemistry, vol. 65, no. 8, pp. 2548–2554, 2000. View at Publisher · View at Google Scholar · View at Scopus