About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 537976, 6 pages
http://dx.doi.org/10.1155/2013/537976
Research Article

Rod-Shaped Magnetite Nano/Microparticles Synthesis at Ambient Temperature

Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007, India

Received 5 June 2012; Revised 24 July 2012; Accepted 8 August 2012

Academic Editor: Ioannis Kourkoutas

Copyright © 2013 Balaprasad Ankamwar and Ashwini Thorat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Zalich, M. L. Vadala, J. S. Riffle, M. Saunders, and T. G. S. Pierre, “Structural and magnetic properties of cobalt nanoparticles encased in siliceous shells,” Chemistry of Materials, vol. 19, no. 26, pp. 6597–6604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Pascal, J. L. Pascal, F. Favier, M. L. E. Moubtassim, and C. Payen, “Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size, morphology, microstructure, and magnetic behavior,” Chemistry of Materials, vol. 11, p. 141, 1999.
  3. H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging,” Journal of the American Chemical Society, vol. 128, no. 22, pp. 7383–7389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Alexiou, R. J. Schmid, R. Jurgons et al., “Targeting cancer cells: magnetic nanoparticles as drug carriers,” European Biophysics Journal, vol. 35, no. 5, pp. 446–450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, “Preparation and properties of magnetite and polymer magnetite nanoparticles,” Langmuir, vol. 15, no. 6, pp. 1945–1951, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, and Y. Li, “Monodisperse magnetic single-crystal ferrite microspheres,” Angewandte Chemie International Edition, vol. 44, no. 18, pp. 2782–2785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Beydoun, R. Amal, G. K. C. Low, and S. McEvoy, “Novel photocatalyst: titania-coated magnetite. Activity and photodissolution,” Journal of Physical Chemistry B, vol. 104, no. 18, pp. 4387–4396, 2000. View at Scopus
  8. W. Stahlhofen and W. Moller, “Behaviour of magnetic micro-particles in the human lung,” Radiation and Environmental Biophysics, vol. 32, pp. 221–238, 1993.
  9. W. Möller, S. Takenaka, M. Rust, W. Stahlhofen, and J. Heyder, “Probing mechanical properties of living cells by magnetopneumography,” Journal of Aerosol Medicine, vol. 10, no. 3, pp. 173–186, 1997. View at Scopus
  10. H. E. Stokinger, “A review of world literature finds iron oxides noncarcinogenic,” American Industrial Hygiene Association Journal, vol. 45, no. 2, pp. 127–133, 1984. View at Scopus
  11. D. Cohen, “Ferromagnetic contamination in the lungs and other organs of the human body,” Science, vol. 180, no. 4087, pp. 745–748, 1973. View at Scopus
  12. T. Sugimoto and E. Matijević, “Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels,” Journal of Colloid and Interface Science, vol. 74, no. 1, pp. 227–243, 1980. View at Scopus
  13. W. Stahlhofen, J. Gebhart, J. Heyder, and B. Stuck, “Production of monodisperse Fe2O3 aerosols as test standards with a “spinning top” generator,” Staub, Reinhaltung der Luft, vol. 39, no. 3, pp. 73–77, 1979. View at Scopus
  14. K. T. Wu, Y. D. Yao, C. R. C. Wang, P. F. Chen, and E. T. Yeh, “Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid,” Journal of Applied Physics, vol. 85, no. 8, pp. 5959–5961, 1999. View at Scopus
  15. D. Zhang, Z. Tong, S. Li, X. Zhang, and A. Ying, “Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion,” Materials Letters, vol. 62, no. 24, pp. 4053–4055, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. W. Jun, Y. M. Huh, J. S. Choi et al., “Nanoscale size effect of magnetic nanocrystals and their utilisation for cancer diagnosis via magnetic resonance imaging,” Journal of the American Chemical Society, vol. 127, no. 16, pp. 5732–5733, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Nomura, S. Shin, O. O. Mehdi, and J. M. Kauffmann, “Preparation, characterization, and application of an enzyme-immobilized magnetic microreactor for flow injection analysis,” Analytical Chemistry, vol. 76, no. 18, pp. 5498–5502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Li, C. Vipulanandan, and K. K. Mohanty, “Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene,” Colloids and Surfaces A, vol. 223, no. 1–3, pp. 103–112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Yang, J. Xing, Y. Guan, J. Liu, and H. Liu, “Synthesis and characterization of superparamagnetic iron nanocomposites by hydrazine reduction,” Journal of Alloys and Compounds, vol. 385, no. 1-2, pp. 283–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. W.-X. Zhang, “Nanoscale iron particles for environmental remediation: an overview,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 323–332, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Huang and S. H. Ehrman, “Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds,” Langmuir, vol. 23, no. 3, pp. 1419–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Chen, H. Wang, B. Zhao, and X. Li, “The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect,” Synthetic Metals, vol. 139, no. 2, pp. 411–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Zhao and Z. Nan, “Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route,” Nanoscale Research Letters, vol. 6, Article ID 230, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. R. Sharma, Elementary Organic Spectroscopy: Principles and Chemical Applications, S. Chand & Co., 4th edition, 2012.
  25. C. T. Seip and C. J. O'Connor, “Fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles,” Nanostructured Materials, vol. 12, no. 1, pp. 183–186, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. G. N. Glavee, K. J. Klabunde, C. M. Sorensen, and G. C. Hadjipanayis, “Chemistry of borohydride reduction of Iron (II) and Iron (III) ions in aqueous and non-aqueous media. Formation of nanoscale FeB, Fe2B and other iron-rich boride powders,” Inorganic Chemistry, vol. 34, pp. 28–35, 1995.
  27. X. Lu, H. Mao, and W. Zhang, “Fabrication of core-shell Fe3O4/polypyrrole and hollow polypyrrole microspheres,” Polymer Composites, vol. 30, no. 6, pp. 847–854, 2009.
  28. B. Ankamwar, T. C. Lai, J. H. Huang et al., “Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells,” Nanotechnology, vol. 21, no. 7, Article ID 75102, 2010. View at Scopus