About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 636280, 7 pages
http://dx.doi.org/10.1155/2013/636280
Research Article

Alkylation and 1,3-Dipolar Cycloaddition of 6-Styryl-4,5-dihydro-2H-pyridazin-3-one: Synthesis of Novel N-Substituted Pyridazinones and Triazolo[4,3-b]pyridazinones

1Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, Béni-Mellal, Morocco
2Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
3Laboratoire de Diffraction des Rayons X, Centre Nationale pour la Recherche, Scientifique et Technique, Rabat, Morocco

Received 9 June 2012; Accepted 18 September 2012

Academic Editor: Julia Revuelta

Copyright © 2013 Souad Mojahidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Some new N-substituted pyridazinones and triazolo[4,3-b]pyridazinones were synthesized, respectively, by simple alkylation and 1,3-dipolar cycloaddition of pyridazin-3-one with nitrile imines. The regioselectivity of the reactions was ascertained by 1H, 13C NMR spectroscopy and X-ray diffraction of the synthesized compounds.

1. Introduction

Pyridazinone derivatives have been reported to exhibit a wide range of pharmacological activities such as antihypertensive [1, 2], anti-HIV [3], antibacterial, [4] aldose reductase inhibitors [5], hepatoprotective agents [6], and COX-2 inhibitors [7]. It has also been reported that pyridazinone derivatives have remarkable anticancer activity [8, 9]. Recently, our research group has reported the synthesis and the antiproliferative activities of new pyridazinone derivatives. Some of these compounds exhibited significant cytotoxicity against human and murine cell lines (A2780, A549, P388, and P815) [10, 11]. As a part of our program we focused on pyridazinones with biological activity, and in connection with our interest in the chemistry of annelated pyridazinones [1012], in this paper we report the synthesis of a new series of N-substituted pyridazinones and triazolo[4,3-b]pyridazinones, which were obtained, respectively, by alkylation and 1,3-dipolar cycloaddition of 6-styryl-4,5-dihydro-2H-pyridazin-3-one.

2. Experimental Section

Melting points were determined using a Büchi-Tottoli apparatus and are uncorrected. 1H and 13C NMR spectra were recorded in CDCl3 or DMSO-d6 and solution (unless otherwise specified) with TMS as an internal reference using a Bruker AC 300 (1H) or 75 MHz (13C) instruments. Chemical shifts are given in δ parts per million (ppm). Multiplicities of 13C NMR resources were assigned by distortionless enhancement by polarization transfer (DEPT) experiments. IR spectra were recorded on a Perkin-Elmer 577 spectrometer (Perkin-Elmer, USA) using KBr disks; only noteworthy IR absorptions are listed (cm−1). High resolution mass spectra were recorded on an Agilent ESI-TOF mass spectrometer. Column chromatography was carried out on SiO2 (silica gel 60 Merck 0.063–0.200 mm). Thin-layer chromatography (TLC) was carried out on SiO2 (silica gel 60, F 254 Merck 0.063–0.200 mm), and the spots were located with UV light (254 nm). Commercial reagents were used without further purification unless stated. Compounds 4a, b were prepared according to the literature methods  [13, 14].

2.1. Synthesis of Pyridazin-3-ones 4a, b

A mixture of the appropriate aldehyde (4 mmol), levulinic acid (4 mmol, 0.46 g), morpholine (3 drops), and glacial acetic acid (9 drops) was heated in toluene at 60°C for 12 h. The solvent was evaporated; the reaction mixture was cooled and washed with acetic acid : water (1 : 4). In each case the formed precipitate was filtered and dried to give the corresponding compound 3. A solution of each compound 3a, b (4.3 mmol) in 20 mL of glacial acetic acid containing hydrazine hydrate (0.5 g, 10 mmol) was heated at reflux for 30 h. The acetic acid was evaporated under vacuum and the residue was taken up with cold water. The precipitate was filtered, washed with cold water, dried, and purified by column chromatography (EtOAc/hexane 4/6).

2.2. 6-Styryl-4,5-dihydro-2H-pyridazin-3-one (4a)

Yield: 65%; mp: 160–162°C; IR (KBr, cm−1): 3420–3350 (NH), 1680 (CO); 1H NMR (DMSO-d6): δ 2.42 (t, 2H, CH2,  Hz), 2.78 (t, 2H, CH2,  Hz), 6.88 (d, 1H,  Hz), 7.05 (d, 1H,  Hz), 7.27–7.41 (m, 3H, ArH), 7.57–7.60 (m, 2H, ArH), 10.89 (s, 1H, NH); 13C NMR (DMSO-d6): 20.6 (CH2), 26.3 (CH2), 126.8 (CH-vinyl), 127.4 (2CH), 128.9 (CH), 129.3 (2CH), 133.9 (CH-vinyl), 136.5 (C), 151.2 (C), 167.7 (CO).

2.3. 6-[2-(4-Methoxyphenyl)vinyl]-4,5-dihydro-2H-pyridazin-3-one (4b)

Yield: 62%; mp: 164–166°C; IR (KBr, cm−1): 3450–3350 (NH), 1685 (C=O); 1H NMR (DMSO-d6): δ 2.38 (t, 2H, CH2,  Hz), 2.75 (t, 2H, CH2,  Hz), 3.78 (s, 3H, CH3O), 6,74 (d, 1H,  Hz), 6.92 (d, 2H,  Hz), 6.98 (d, 1H,  Hz), 7.50 (d, 2H,  Hz), 10.80 (s, 1H, NH); 13C NMR (DMSO-d6): 20.6 (CH2), 26.4 (CH2), 55.6 (CH3O), 114.7 (2CH), 124.6 (CH-vinyl), 128.8 (2CH), 129.2 (C), 133.6 (CH-vinyl), 151.4 (C), 160.1 (C), 167.7 (CO).

2.4. Synthesis of N-Substituted Pyridazinones 5a–c

To a solution of compound 4a (1.22 g, 6.13 mmol) in dry THF (30 mL) was added potassium carbonate (2.50 g, 18.30 mmol). The selected alkyl halide (7.40 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the solvent was evaporated under vacuum. The crude material was dissolved with CH2Cl2 (50 mL), washed with water and brine, dried over MgSO4 and the solvent was evaporated at reduced pressure. The resulting residue was purified by column chromatography (EtOAc/hexane 3/7).

2.5. 2-Methyl-6-styryl-4,5-dihydro-2H-pyridazin-3-one (5a)

Yield: 85%; mp: 136–138°C; IR (KBr, cm−1): 1666 (CO); 1H NMR (CDCl3): δ 2.53 (t, 2H, CH2,  Hz), 2.79 (t, 2H, CH2,  Hz), 3.45 (s, 3H, NCH3), 6.84 (d, 1H,  Hz), 6.93 (d, 1H,  Hz), 7.24–7.48 (m, 5H); 13C NMR (CDCl3): δ 21.2 (CH2), 26.8 (CH2), 36.6 (NCH3), 126.8 (CH-vinyl), 127.4 (2CH), 128.7 (CH), 128.9 (2CH), 134.5 (CH-vinyl), 135.8 (C), 151.7 (C), 165.8 (CO); HRMS (ESI-TOF) m/z: calculated for C13H15N2O [M + H]+: 215.11844 found: 215.11816.

2.6. 2-Allyl-6-styryl-4,5-dihydro-2H-pyridazin-3-one (5b)

Yield: 72%; mp: 178–180°C; IR (KBr, cm−1): 1670 (CO); 1H NMR (CDCl3): δ 2.57 (t, 2H, CH2,  Hz), 2.81 (t, 2H, CH2,  Hz), 4.41–4.44 (m, 2H, NCH2), 5.18–5.26 (m, 2H, =CH2), 5.86–5.97 (m, 1H, =CH), 6,86 (d, 1H,  Hz), 6.94 (d, 1H,  Hz), 7.31–7.39 (m, 3H), 7.46–7.50 (m, 2H); 13C NMR (CDCl3): δ 21.1 (CH2), 26.9 (CH2), 50.9 (NCH2), 117.0 (=CH2), 126.1 (CH), 127.0 (2CH), 128.4 (CH), 128.9 (2CH), 132.8 (CH), 134.4 (CH), 135.8 (C), 151.9 (C), 165.4 (CO); HRMS (ESI-TOF) m/z: calculated for C15H17N2O [M + H]+: 241.13950 found: 241.13936.

2.7. 2-(2-Oxo-2-phenylethyl)-6-styryl-4,5-dihydro-2H-pyridazin-3-one (5c)

Yield: 60%; mp: 88–90°C; IR (KBr, cm−1): 1675 (CO), 1690 (CO); 1H NMR (CDCl3): δ 2.67 (t, 2H, CH2,  Hz), 2.91 (t, 2H, CH2,  Hz), 5.25 (s, 2H, NCH2), 6.85 (d, 1H,  Hz), 6.92 (d, 1H,  Hz), 7.29–7.38 (m, 3H), 7.45–7.52 (m, 4H), 7.57–7.62 (m, 1H), 7.96–8.00 (m, 2H); 13C NMR (CDCl3): δ 21.2 (CH2), 26.6 (CH2), 55.2 (NCH2), 125.9 (CH), 127.1 (2CH), 128.0 (2CH), 128.4 (CH), 128.7 (2CH), 128.9 (2CH), 133.6 (CH), 134.6 (CH), 135.0 (C), 135.8 (C), 152.2 (C), 166.5 (CO), 192.9 (CO). HRMS (ESI-TOF) m/z: calculated for C20H19N2O2 [M + H]+: 319.14465 found: 319.14438.

2.8. General Procedure for the Preparation of Triazolo[4,3-b]pyridazinones 8a–e

To a solution of pyridazin-3(2H)-one (4a) (1.0 g, 5 mmol) and ethyl hydrazono-α-bromoglyoxylate (6a–e)(5 mmol) in dry THF (50 mL), K2CO3 (2.1 g, 15 mmol) was added. The mixture was refluxed in each case for 5–8 h. After evaporation of the solvent, the residue was purified by column chromatography on silica gel using Hexane-EtOAc 80 : 20 as eluent.

2.9. 6-Oxo-8a-styryl-1-p-tolyl-1,5,6,7,8,8a-hexahydro-[1,2,4]triazolo[4,3-b]pyridazine-3-carboxylic Acid Ethyl Ester (8a)

Yield: 56%; mp: 182–184°C; IR (KBr, cm−1): 1685 (CONH), 1710 (CO ester), 3050 (NH); 1H NMR (CDCl3): δ 1.40 (t, 3H, CH3,  Hz), 2.28 (s, 3H, CH3), 2.26–2.39 (m, 3H), 2.78–2.89 (m, 1H), 4.37 (q, 2H, CH2O,  Hz), 6,49 (d, 1H,  Hz), 6.83 (d, 1H,  Hz), 7.08 (d, 2H,  Hz), 7.22 (d, 2H,  Hz), 7.28–7.39 (m, 3H, ArH), 7.43–7.46 (m, 2H, ArH), 7.53 (s, 1H, NH); 13C NMR (CDCl3): δ 14.2 (CH3), 20.7 (CH3), 28.6 (CH2), 29.5 (CH2), 62.2 (CH2O), 88.1 (C-8a), 117.8 (2CH), 127.1 (2CH), 128.7 (2CH), 128.9 (CH), 129.8 (2CH), 133.0 (C), 133.5 (CH), 135.3 (C), 138.4 (C), 140.6 (C), 146.1 (C), 158.2 (CO), 174.3 (CO ester); HRMS (ESI-TOF) m/z: calculated for C23H25N4O3 [M + H]+: 405.19212 found: 405.19201.

2.10. 1-(4-Chloro-phenyl)-6-oxo-8a-styryl-1,5,6,7,8,8a-hexahydro-[1,2,4]triazolo[4,3-b]pyridazine-3-carboxylic Acid Ethyl Ester (8b)

Yield: 65%; mp: 185–187°C; IR (KBr, cm−1): 1680 (CONH), 1720 (CO ester), 3035 (NH); 1H NMR (CDCl3): δ 1.40 (t, 3H, CH3,  Hz), 2.29–2.44 (m, 3H), 2.83–2.90 (m, 1H), 4.38 (q, 2H, CH2O,  Hz), 6,48 (d, 1H,  Hz), 6.81 (d, 1H,  Hz), 7.21–7.30 (m, 4H, ArH), 7.33–7.44 (m, 5H, ArH), 7.54 (s, 1H, NH); 13C NMR (CDCl3): δ 14.2 (CH3), 28.7 (CH2), 29.4 (CH2), 62.4 (CH2O), 87.7 (C-8a), 118.1 (2CH), 127.1 (2CH), 128.5 (CH), 128.8 (2CH), 129.0 (CH), 129.8 (2CH), 134.1 (CH), 135.0 (C), 139.3 (C), 140.2 (C), 145.9 (C), 158.5 (CO), 174.1 (CO ester); HRMS (ESI-TOF) m/z: calculated for C22H21ClN4O3Na [M + Na]+: 447.11944 found: 447.11900.

2.11. 1-(4-Nitro-phenyl)-6-oxo-8a-styryl-1,5,6,7,8,8a-hexahydro-[1,2,4]triazolo[4,3-b]pyridazine-3-carboxylic Acid Ethyl Ester (8c)

Yield: 49%; mp: 168–170°C; IR (KBr, cm−1): 1530, 1320 (NO2), 1670 (CONH), 1725 (CO ester), 3050 (NH); 1H NMR (CDCl3): δ 1.41 (t, 3H, CH3,  Hz), 2.24–2.36 (m, 3H), 2.74–2.81 (m, 1H), 4.39 (q, 2H, CH2O,  Hz), 6,22 (d, 1H,  Hz), 6.85 (d, 1H,  Hz), 7.32–7.39 (m, 6H, ArH), 7.71 (s, 1H, NH), 7.73–7.78 (m, 1H, ArH), 8.03–8.13 (m, 2H, ArH); 13C NMR (CDCl3): δ 14.1 (CH3), 29.1 (CH2), 30.4 (CH2), 62.5 (CH2O), 86.8 (C-8a), 122.1 (2CH), 122.8 (CH), 126.4 (2CH), 126.9 (2CH), 128.9 (2CH), 129.1 (CH), 132.5 (CH), 134.8 (C), 140.1 (C), 142.2 (C), 146.4 (C), 157.9 (CO), 172.1 (CO ester); HRMS (ESI-TOF) m/z: calculated for C22H22N5O5 [M + H]+: 436.16155 found: 436.16116.

2.12. 1-(2-Methyl-3-nitro-phenyl)-6-oxo-8a-styryl-1,5,6,7,8,8a-hexahydro-[1,2,4]triazolo[4,3-b]pyridazine-3-carboxylic Acid Ethyl Ester (8d)

Yield: 51%; mp: 136–138°C; IR (KBr, cm−1): 1545, 1310 (NO2), 1670 (CONH), 1710 (CO ester), 3060 (NH); 1H NMR (CDCl3): δ 1.40 (t, 3H, CH3,  Hz), 2.01–2.11 (m, 1H), 2.40 (s, 3H, CH3), 2.45–2.64 (m, 3H), 4.40 (q, 2H, CH2O,  Hz), 6,15 (d, 1H,  Hz), 6.86 (d, 1H,  Hz), 7.29–7.41 (m, 6H, ArH), 7,52 (d, 1H,  Hz), 7.76 (s, 1H, NH), 7,80 (d, 1H,  Hz); 13C NMR (CDCl3): δ 14.1 (CH3), 16.0 (CH3), 28.6 (CH2), 30.3 (CH2), 62.6 (CH2O), 88.9 (C-8a), 123.8 (CH), 126.2 (CH), 126.7 (CH), 127.0 (2CH), 128.9 (2CH), 129.1 (CH), 131.9 (C), 133.0 (CH), 133 (CH), 134.9 (C), 140.2 (C), 147.4 (C), 157.8 (CO), 171.9 (CO ester).

2.13. 1-(2,4-Dibromo-phenyl)-6-oxo-8a-styryl-1,5,6,7,8,8a-hexahydro-[1,2,4]triazolo[4,3-b]pyridazine-3-carboxylic Acid Ethyl Ester (8e)

Yield: 46%; mp: 160–162°C; IR (KBr, cm−1): 1675 (CONH), 1715 (CO ester), 3060 (NH); 1H NMR (CDCl3): δ 1.38 (t, 3H, CH3,  Hz), 2.08–2.18 (m, 1H), 2.45–2.62 (m, 2H), 2.78–2.90 (m, 1H), 4.39 (q, 2H, CH2O,  Hz), 6,20 (d, 1H,  Hz), 6.79 (d, 1H,  Hz), 7,14 (d, 1H,  Hz), 7.32–7.38 (m, 5H, ArH), 7,40 (dd, 1H, and 2.2 Hz), 7.61 (s, 1H, NH), 7,80 (d, 1H,  Hz); 13C NMR (CDCl3): δ 14.2 (CH3), 28.9 (CH2), 31.9 (CH2), 62.5 (CH2O), 88.0 (C-8a), 122.2 (C), 123.8 (C), 127.0 (2CH), 128.8 (2CH), 128.9 (CH), 131.1 (CH), 131.9 (CH), 133.0 (CH), 136.7 (CH), 138.5 (CH), 142.5 (C), 146.2 (C), 157.9 (CO), 173.1 (CO ester).

3. Results and Discussion

The starting compounds 6-(styryl)-4,5-dihydropyridazinones 4a, b used for alkylation reaction and 1,3-dipolar cycloadditions, were prepared from levulinic acid 1 according to Scheme 1. The treatment of compound 1 with the aromatic aldehydes 2a, b produced the intermediate benzylidenelevulinic acid 3a, b. The derivatives 3a, b obtained were then treated with hydrazine hydrate in refluxing acetic acid in order to achieve the desired styrylpyridazinones 4a, b.

636280.sch.001
Scheme 1

The structure of compound 4a was confirmed for the first time by X-ray crystallography (Figures 1 and 2 and Table 1). The crystal structure of this compound, whose molecular formula is C12H12N2O, was determined by single-crystal diffraction methods. The compound crystallizes in the monoclinic unit cell space group symmetry with lattice parameters: Å, Å, Å, and ; 3 and D (calc., ) = 1.261 Mg m−3. A total of 11692 data reflections were collected over the range of ; of these, 1647 (independent and with I ≥2σ(I)) were used in the structural analysis. The final and residuals were 0.054 and 0.179, respectively.

tab1
Table 1: Crystal data and structure refinement parameters of compound 4a.
636280.fig.001
Figure 1: ORTEP III diagram of 4a. Compound showing the molecular numbering scheme. Displacement ellipsoids are drawn at 50% probability for all atoms, except for H, for which they have been set to be artificially small.
636280.fig.002
Figure 2: Partial packing view showing the chain formed by the hydrogen bridge N–H…O.

In compound 4a, the dihydropyridazinone ring is oriented at dihedral angles of 17.11 (9)° with respect to the benzene ring. In the crystal, the molecules are linked by N–H…O hydrogen bonds (Figure 2).

The N-alkylation reaction in the pyridazinone series is generally used for the introduction of pharmacophoric groups; consequently first of all it is necessary to study the alkylation reaction in the presence of 4,5-dihydropyridazinone and base in order to establish their reactivity and possible regioselectivity. The treatment of 6-styryl-4,5-dihydropyridazinone (4a) with alkyl halides (CH3I, BrCH2CH=CH2 and BrCH2COC6H5) in the presence of anhydrous K2CO3 in dry THF gave only the N-substituted-pyridazinones 5a–c in moderate to good yields (Scheme 2).

636280.sch.002
Scheme 2

The structures of N-substituted pyridazinones 5a–c were characterized using 1H NMR and 13C NMR spectra. The exclusive alkylation at the 2-N position was confirmed by X-ray crystallography of compound 5a (Figures 3 and 4 and Table 2). The crystal structure of compound 5a, whose molecular formula is C13H14N2O, was also determined by single-crystal diffraction methods. The compound crystallizes in the monoclinic unit cell space group symmetry with lattice parameters: Å, Å, Å, and ; 3 and D (calc., ) = 1.261 Mg m−3. A total of 13216 data were collected over the range of ; of these, 3329 (independent and with I ≥2σ(I)) were used in the structural analysis. The final and residuals were 0.051 and 0.167, respectively.

tab2
Table 2: Crystal data and structure refinement parameters of compound 5a.
636280.fig.003
Figure 3: ORTEP III diagram of 5a. Compound showing the molecular numbering scheme. Displacement ellipsoids are drawn at 50% probability for all atoms, except for H, for which they have been set to be artificially small.
636280.fig.004
Figure 4: Partial packing view showing the chain formed by C–H…O.

In compound 5a, the dihydropyridazinone ring is oriented at dihedral angles of 20.96 (8)° with respect to the benzene ring. In the crystal, molecules are linked by C–H…O hydrogen bonds (Figure 4).

1,3-Dipolar cycloadditions offer a convenient one-step concerted route for the construction of five-membered heterocycles with multiple stereogenic centers [1521]. In the present work, we report a full account on the examination on 1,3-dipolar cycloaddition reaction of 6-styryl-4,5-dihydropyridazinone 4a with nitrile imines. The former compound has three potential dipolarophilic sites: the C=N double bond, the C=C double bond, and the C=O double bond. The reaction of compound 4a with N-aryl-C-ethoxycarbonyl nitrile imines 7a–e, generated in situ from ethyl hydrazono-α-bromoglyoxylates 6a–e  [22] and K2CO3, was performed in refluxing dry THF. In all cases, only one type of triazolo[4,3-b]pyridazinone (8a–e) was obtained in moderate to good yields (Scheme 3). No adducts resulting from condensation on the double bonds C=C and/or C=O were detected. The reaction was exclusively site- and regioselective.

636280.sch.003
Scheme 3

The structural assignments of the triazolo[4,3-b]pyridazinones 8a–e are based on a full characterization by 1H NMR and 13C NMR spectra.

The 1H NMR spectra of the compounds 8a–e, show in particular the presence of two doublet signals at ranges 6.15–6.49 ppm and 6.79–6.86 ppm corresponding to the vinylic protons of the double bond HC=CH with a coupling constant of ca. 16.1–16.5 Hz; this excludes the addition of the dipole to the double bond HC=CH.

The 13C NMR spectra of cycloadducts 8a–e, exhibit a signal at 157.8–158.5 ppm assigned to the resonance of carbonyl carbon C=O; this excludes also the addition of the nitrile imine to the double bond C=O. These results demonstrate the site selectivity of the double bond C=N; the 13C NMR spectra of cycloadducts 8a–e, exhibit in each case a signal at 85.9–89.6 ppm due to the resonance of each quaternary carbon C-8. These carbon centres are then slightly deshielded. Such fact confirms the direction of the dipole addition to the C=N double bond; otherwise, the C-8 signals would appear upfield (the value would be <60 ppm).

The reaction is thus regioselective and no 1,2,3-triazole is formed.

4. Conclusion

In summary, with a simple approach, a series of new N-substituted pyridazinones and triazolo[4,3-b]pyridazinones can be synthesized, from moderate to good yields, by reaction of 6-styryl-4,5-dihydro-2H-pyridazin-3-one 4a with alkyl halides and using N-aryl-C-ethoxycarbonyl nitrile imines as 1,3-dipoles.

Acknowledgments

The authors thank the FCT-Portugal and CNRST-Morocco for financial assistance to the joint collaborative project. Thanks are also due to the Portuguese Foundation for Science and Technology (FCT) and FEDER, for funding the Organic Chemistry Research Unit—QOPNA (Project PEst-C/QUI/UI0062/2011).

References

  1. S. Demirayak, A. C. Karaburun, and R. Beis, “Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their antihypertensive activities,” European Journal of Medicinal Chemistry, vol. 39, no. 12, pp. 1089–1095, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Siddiqui, R. Mishra, and M. Shaharyar, “Synthesis, characterization and antihypertensive activity of pyridazinone derivatives,” European Journal of Medicinal Chemistry, vol. 45, no. 6, pp. 2283–2290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. K. Sweeney, J. P. Dunn, Y. Li et al., “Discovery and optimization of pyridazinone non-nucleoside inhibitors of HIV-1 reverse transcriptase,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 15, pp. 4352–4354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Sonmez, I. Borber, and E. Akbas, “Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes,” European Journal of Medicinal Chemistry, vol. 41, no. 1, pp. 101–105, 2006. View at Publisher · View at Google Scholar
  5. L. Costantino, G. Rastelli, G. Cignarella, and D. Barlocco, “Synthesis and aldose reductase inhibitory activity of a new series of benzo[h]cinnolinone derivatives,” Farmaco, vol. 55, no. 8, pp. 544–552, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Kwon and A. Moon, “Synthesis of 3-alkylthio-6-allylthiopyridazine derivatives and their antihepatocarcinoma activity,” Archives of Pharmacal Research, vol. 28, no. 4, pp. 391–394, 2005. View at Publisher · View at Google Scholar
  7. R. R. Harris, L. Black, S. Surapaneni et al., “ABT-963 [2-(3,4-difluoro-phenyl)-4-(3-hydroxy-3-methyl-butoxy)-5-(4- methanesulfonyl-phenyl)-2H-pyridazin-3-one], a highly potent and selective disubstituted pyridazinone cyclooxgenase-2 inhibitor,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 3, pp. 904–912, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Malinka, A. Redzicka, and O. Lozach, “New derivatives of pyrrolo[3,4-d]pyridazinone and their anticancer effects,” Farmaco, vol. 59, no. 6, pp. 457–462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. F. Abd El-Ghaffar, M. K. Mohamed, M. S. Kadah, A. M. Radwan, G. H. Said, and S. N. Abd el Al, “Synthesis and anti-tumor activities of some new pyridazinones containing the 2-phenyl-1H-indolyl moiety,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 3, pp. 248–259, 2011. View at Scopus
  10. S. Mojahidi, E. M. Rakib, H. Sekkak et al., “Synthesis and in-vitro cytotoxic evaluation of novel pyridazin-4-one derivatives,” Archiv der Pharmazie, vol. 343, no. 5, pp. 310–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Sekkak, S. Mojahidi, E. M. Rakib et al., “Synthesis and antiproliferative evaluation of spirothiadiazolopyridazine derivatives,” Letters in Drug Design and Discovery, vol. 7, no. 10, pp. 743–746, 2010. View at Scopus
  12. S. Abouricha, E. M. Rakib, N. Benchat, M. Alaoui, H. Allouchi, and B. El Bali, “Facile synthesis of new spirothiadiazolopyridazines by 1,3-dipolar cycloaddition,” Synthetic Communications, vol. 35, no. 16, pp. 2213–2221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Zaheer, I. K. Kacker, and N. S. Rao, “Über die Kondensation von Lavulinsaure mit aromatischen Aldehyden,” Chemische Berichte, vol. 89, no. 2, pp. 351–354, 1956.
  14. I. Sircar, R. P. Steffen, G. Bobowski et al., “Cardiotonic agents. 9. Synthesis and biological evaluation of a series of (E)-4,5-dihydro-6-[2-[4-(1H-imidazol-1-yl)phenyl]ethenyl]-3(2H)-pyridazinones: a novel class of compounds with positive inotropic, antithrombotic, and vasodilatory activities for the treatment of congestive heart failure,” Journal of Medicinal Chemistry, vol. 32, no. 2, pp. 342–350, 1989. View at Scopus
  15. R. Huisgen, “1,3-dipolar cycloadditions. Past and future,” Angewandte Chemie, vol. 2, no. 10, pp. 565–598, 1963. View at Publisher · View at Google Scholar
  16. R. Huisgen, “Kinetics and mechanism of 1,3-dipolar cycloadditions,” Angewandte Chemie, vol. 2, no. 11, pp. 633–645, 1963. View at Publisher · View at Google Scholar
  17. A. Padwa, Ed., 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, NY, USA, 1984.
  18. K. V. Gothelf and K. A. Jorgensen, “Asymmetric 1,3-dipolar cycloaddition reactions,” Chemical Reviews, vol. 98, no. 2, pp. 863–909, 1998. View at Publisher · View at Google Scholar
  19. A. Padwa and A. M. Schoffsttall, in Advances in Cycloaddition, D. P. Curran, Ed., vol. 2, pp. 1–89, JAI, London, UK, 1990.
  20. S. Kobayashi and K. A. Jorgensen, Eds., Cycloaddition Reactions in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2002.
  21. A. Padwa, Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, John Wiley & Sons, 2002.
  22. D. B. Sharp and C. S. Hamilton, “Derivatives of 1,2,4-triazole and of pyrazole,” Journal of the American Chemical Society, vol. 68, no. 4, pp. 588–591, 1946. View at Scopus