About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 716098, 7 pages
http://dx.doi.org/10.1155/2013/716098
Research Article

Effective Biosorption of Nickel(II) from Aqueous Solutions Using Trichoderma viride

1Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s University), Andhara Pradesh, Tirupati 517502, India
2Food and Water Division, Vimta Life Sciences, Hyderabad 500078, India

Received 19 February 2012; Revised 27 June 2012; Accepted 7 August 2012

Academic Editor: Veysel T. Yilmaz

Copyright © 2013 P. Sujatha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wang and C. Chen, “Biosorbents for heavy metals removal and their future,” Biotechnology Advances, vol. 27, no. 2, pp. 195–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Denkhaus and K. Salnikow, “Nickel essentiality, toxicity, and carcinogenicity,” Critical Reviews in Oncology/Hematology, vol. 42, no. 1, pp. 35–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. World Health Organization, Guidelines for Drinking-Water Quality, Incorporating First addendum to Third Edition, vol. 1, World Health Organization, Geneva, Switzerland, 3rd edition, 2006.
  4. Y. Liu and H. Xu, “Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules,” Biochemical Engineering Journal, vol. 35, no. 2, pp. 174–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. E. O. Uthus and C. D. Seaborn, “Deliberations and evaluations of the approaches, endpoints and paradigms for dietary recommendations of the other trace elements,” Journal of Nutrition, vol. 126, no. 9, supplement, pp. 2452S–2459S, 1996. View at Scopus
  6. R. K. Watt and P. W. Ludden, “Nickel-binding proteins,” Cellular and Molecular Life Sciences, vol. 56, no. 7-8, pp. 604–625, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. G. Maleva, G. F. Nekrasova, P. Malec, M. N. V. Prasad, and K. Strzałka, “Ecophysiological tolerance of Elodea canadensis to nickel exposure,” Chemosphere, vol. 77, no. 3, pp. 392–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-Y. Chen and T.-H. Lin, “Nickel toxicity to human term placenta: in vitro study on lipid peroxidation,” Journal of Toxicology and Environmental Health A, vol. 54, no. 1, pp. 37–47, 1998. View at Scopus
  9. N. Akhtar, J. Iqbal, and M. Iqbal, “Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies,” Journal of Hazardous Materials, vol. 108, no. 1-2, pp. 85–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wild, “Liquid wastes from the metal finishing industry,” in Surveys in Industrial Waste Water Treatment, D. Barnes, C. F. Forster, and S. E. Hrudey, Eds., pp. 21–62, John Wiley and Sons, New York, NY, USA, 1987.
  11. G. H. Pino, L. M. S. De Mesquita, M. L. Torem, and G. A. S. Pinto, “Biosorption of heavy metals by powder of green coconut shell,” Separation Science and Technology, vol. 41, no. 14, pp. 3141–3153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. H. Pino, L. M. Souza De Mesquita, M. L. Torem, and G. A. S. Pinto, “Biosorption of cadmium by green coconut shell powder,” Minerals Engineering, vol. 19, no. 5, pp. 380–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. V. K. Gupta and A. Rastogi, “Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.: a comparative study,” Colloids and Surfaces B, vol. 64, no. 2, pp. 170–178, 2008. View at Publisher · View at Google Scholar
  14. A. Kapoor, T. Viraraghavan, and D. R. Cullimore, “Removal of heavy metals using the fungus Aspergillus niger,” Bioresource Technology, vol. 70, no. 1, pp. 95–104, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Mattuschka and G. Straube, “Biosorption of metals by a waste biomass,” Journal of Chemical Technology and Biotechnology, vol. 58, no. 1, pp. 57–63, 1993. View at Scopus
  16. P. Sar, S. K. Kazy, R. K. Asthana, and S. P. Singh, “Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa,” International Biodeterioration and Biodegradation, vol. 44, no. 2-3, pp. 101–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Tobin, D. G. Cooper, and R. J. Neufeld, “Uptake of metal ions by Rhizopus arrhizus biomass,” Applied and Environmental Microbiology, vol. 47, no. 4, pp. 821–824, 1984. View at Scopus
  18. H. I. Al-Taweil, M. B. Osman, A. A. Hamid, and W. M. W. Yusoff, “Optimizing of Trichoderma viride cultivation in submerged state fermentation,” American Journal of Applied Sciences, vol. 6, no. 7, pp. 1284–1288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Anand, J. Isar, S. Saran, and R. K. Saxena, “Bioaccumulation of copper by Trichoderma viride,” Bioresource Technology, vol. 97, no. 8, pp. 1018–1025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Metcalf and Eddy, Wastewater Engineering Treatment and Reuse, Tata McGraw-Hill, New Delhi, India, 4th edition, 2003.
  21. S. Lagergren, “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1898.
  22. Y. S. Ho, G. McKay, D. A. J. Wase, and C. F. Forster, “Study of the sorption of divalent metal ions on to peat,” Adsorption Science and Technology, vol. 18, no. 7, pp. 639–650, 2000. View at Scopus
  23. W. J. Weber Jr. and J. C. Morriss, “Kinetics of adsorption on carbon from solution,” Journal of the Sanitary Engineering Division, vol. 89, no. 2, pp. 31–60, 1963.
  24. S. Wang, Y. Boyjoo, and A. Choueib, “A comparative study of dye removal using fly ash treated by different methods,” Chemosphere, vol. 60, no. 10, pp. 1401–1407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. K. Jain, “Adsorption of zinc onto bed sediments of the River Ganga: adsorption models and kinetics,” Hydrological Sciences Journal, vol. 46, pp. 419–434, 2001.
  26. Z. R. Holan and B. Volesky, “Biosorption of lead and nickel by biomass of marine algae,” Biotechnology and Bioengineering, vol. 43, no. 11, pp. 1001–1009, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Nuhoglu and E. Malkoc, “Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory,” Bioresource Technology, vol. 100, no. 8, pp. 2375–2380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Rao, A. V. Parwate, and A. G. Bhole, “Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash,” Waste Management, vol. 22, no. 7, pp. 821–830, 2002. View at Publisher · View at Google Scholar · View at Scopus