About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 840614, 4 pages
http://dx.doi.org/10.1155/2013/840614
Research Article

The C60(FeCp2)2-Based Cell Proliferation Accelerator

1Laboratory for Superconducting Materials Physics, State Scientific and Production Association “Scientific-Practical Materials Research Center of the NAS of Belarus”, P. Brovka Street 19, 220072 Minsk, Belarus
2Department of New Materials, Lykov Institute of the Heat and Mass Transfer of the NAS of Belarus, P. Brovka Street 15, 220072 Minsk, Belarus
3Central Scientific Research Laboratory of the Belarus State Medical University, Dzerjinski Avenue, 83, 220116 Minsk, Belarus
4Institute of Physiology of the NAS of Belarus, Academicheskaya Street 28, 220072 Minsk, Belarus
5School of Chemistry, Manchester University, Oxford Road, Manchester M13 9PL, UK

Received 22 February 2013; Accepted 4 April 2013

Academic Editor: Mehmet Senel

Copyright © 2013 Andrei Soldatov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. L. Ma and X. J. Liang, “Fullerenes as unique nanopharmaceuticals for disease treatment,” Science China Chemistry, vol. 53, no. 11, pp. 2233–2340, 2010.
  2. C. A. Theriot, R. C. Casey, V. C. Moore et al., “Dendro[C60]fullerene DF-1 provides radioprotection to radiosensitive mammalian cells,” Radiation and Environmental Biophysics, vol. 49, no. 3, pp. 437–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. D. Bolskar, A. F. Benedetto, L. O. Husebo et al., “First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit In vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent,” Journal of the American Chemical Society, vol. 125, no. 18, pp. 5471–5478, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Ali, J. I. Hardt, K. L. Quick et al., “A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties,” Free Radical Biology and Medicine, vol. 37, no. 8, pp. 1191–1202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. J. Ryan, H. R. Bateman, A. Stover et al., “Fullerene nanomaterials inhibit the allergic response,” Journal of Immunology, vol. 179, no. 1, pp. 665–672, 2007. View at Scopus
  6. H. Meng, G. Xing, B. Sun et al., “Potent angiogenesis inhibition by the particulate form of fullerene derivatives,” ACS Nano, vol. 4, no. 5, pp. 2773–2783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zhu, Z. Ji, J. Wang et al., “Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x,” Small, vol. 4, no. 8, pp. 1168–1175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Y. Xu, J. D. Zhu, K. Xiang, Y. K. Li, R. H. Sun, and J. Ma, “Synthesis and immunomodulatory activity of [60]fullerene-tuftsin conjugates,” Biomaterials, vol. 32, no. 36, pp. 9940–9949, 2011. View at Publisher · View at Google Scholar
  9. H. Tsumoto, S. Kawahara, Y. Fujisawa et al., “Syntheses of water-soluble [60]fullerene derivatives and their enhancing effect on neurite outgrowth in NGF-treated PC12 cells,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 6, pp. 1948–1952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Maeda-Mamiya, E. Noiri, H. Isobe et al., “In vivo gene delivery by cationic tetraamino fullerene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5339–5344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Fiorito, A. Serafino, F. Andreola, and P. Bernier, “Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages,” Carbon, vol. 44, no. 6, pp. 1100–1105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Saitoh, A. Miyanishi, H. Mizuno et al., “Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages,” Journal of Photochemistry and Photobiology B, vol. 102, no. 1, pp. 69–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Yasukazu, M. Hiromi, X. Li, H. Sayuri, K. Ken, and M. Nobuhiko, “Polyhydroxylated fullerene C60(OH)44 suppresses intracellular lipid accumulation together with repression of intracellular superoxide anion radicals and subsequent PPARγ2 expression during spontaneous differentiation of OP9 preadipocytes into adipocytes,” Molecular and Cellular Biochemistry, vol. 366, no. 1-2, pp. 191–1200, 2012.
  14. P. Kopf-Maier, H. Kopf, and E. W. Neuse, “Ferrocenium salts—the first antitumor iron compounds,” Angewandte Chemie, vol. 96, no. 6, pp. 446–447, 1984.
  15. P. Kopf-Maier, H. Kopf, and E. W. Neuse, “Ferricenium complexes: a new type of water-soluble antitumor agent,” Journal of Cancer Research and Clinical Oncology, vol. 108, no. 3, pp. 336–340, 1984. View at Scopus
  16. V. N. Babin, P. M. Raevskii, K. G. Shitkov, L. V. Snegur, and S. Y. Nekrasov, “Antitumor activity of metallocenes,” Mendeleev Chemistry Journal, vol. 39, no. 2, pp. 17–23, 1995.
  17. A. J. Deeming, “Mononuclear Iron Compounds with η2η6 Hydrocarbon Ligands,” in Comprehensive organometallic chemistry, G. Wilkinson, F. G. A. Stone, and E. W. Abel, Eds., p. 481, Pergamon Press, 1982.
  18. N. Guskos, A. G. Soldatov, G. Zolnierkiewicz, V. Likodimos, and S. Glenis, “Spin dynamics and charge transfer in C60-2ferrocene studied by electron spin resonance,” Journal of Non-Crystalline Solids, vol. 354, no. 35-39, pp. 4334–4337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Crane, P. B. Hitchcock, H. W. Kroto, R. Taylor, and D. R. M. Walton, “Preparation and characterisation of C60(ferrocene)2,” Journal of the Chemical Society, Chemical Communications, no. 24, pp. 1764–1765, 1992. View at Publisher · View at Google Scholar · View at Scopus