About this Journal Submit a Manuscript Table of Contents
Journal of Chemistry
Volume 2013 (2013), Article ID 840954, 8 pages
http://dx.doi.org/10.1155/2013/840954
Research Article

Nano-ZnO Catalyzed Green and Efficient One-Pot Four-Component Synthesis of Pyranopyrazoles

1Department of Chemistry, Shri Muktanand College, Gangapur, Maharashtra 431 109, India
2Department of Chemistry, Deogiri College, Station Road, Aurangabad, Maharashtra 431 005, India

Received 15 May 2013; Accepted 29 June 2013

Academic Editor: Hakan Arslan

Copyright © 2013 Sunil U. Tekale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Jiang, H.-D. Xu, J.-B. Xi et al., “Diastereoselectively switchable enantioselective trapping of carbamate ammonium ylides with imines,” Journal of the American Chemical Society, vol. 133, no. 22, pp. 8428–8431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Kalinski, H. Lemoine, J. Schmidt et al., “Multicomponent reactions as a powerful tool for generic drug synthesis,” Synthesis, no. 24, pp. 4007–4011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Roy, P. S. Jadhavar, K. Seth, K. K. Sharma, and A. K. Chakraborti, “Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones,” Synthesis, no. 14, pp. 2261–2267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Mallepalli, L. Yeramanchi, R. Bantu, and L. Nagarapu, “Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-free conditions,” Synlett, no. 18, pp. 2730–2732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Weeden, R. Huang, K. D. Galloway, P. W. Gingrich, and B. J. Frost, “The Suzuki reaction in aqueous media promoted by p, N Ligands,” Molecules, vol. 16, no. 8, pp. 6215–6231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Kanizsai, S. Gyónfalvi, Z. Szakonyi, R. Sillanpää, and F. Fülöp, “Synthesis of bi- and tricyclic β-lactam libraries in aqueous medium,” Green Chemistry, vol. 9, no. 4, pp. 357–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. B. Sapkal, K. F. Shelke, B. B. Shingate, and M. S. Shingare, “Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions,” Tetrahedron Letters, vol. 50, no. 15, pp. 1754–1756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. W. Kshirsagar, N. R. Patil, and S. D. Samant, “Mg-Al hydrotalcite as a first heterogeneous basic catalyst for the synthesis of 4H-pyrano[2,3-c]pyrazoles through a four-component reaction,” Synthetic Communications, vol. 41, no. 9, pp. 1320–1325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. M. Moghaddam, H. Saeidian, Z. Mirjafary, and A. Sadeghi, “Rapid and efficient one-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives through the Hantzsch four component condensation by zinc oxide,” Journal of the Iranian Chemical Society, vol. 6, no. 2, pp. 317–324, 2009. View at Scopus
  10. D. I. MaGee, M. Dabiri, P. Salehi, and L. Torkian, “Highly efficient one-pot three-component Mannich reaction catalyzed by ZnO-nanoparticles in water,” Arkivoc, vol. 11, pp. 156–164, 2011.
  11. A. H. Mandour, E. R. El-Sawy, M. S. Ebaid, and S. M. Hassan, “Synthesis and potential biological activity of some novel 3-[(N-substituted indol-3-yl)methyleneamino]-6-amino-4-aryl-pyrano(2,3-c)pyrazole-5-carbonitriles and 3,6-diamino-4-(N-substituted indol-3-yl)pyrano(2,3-c)pyrazole-5- carbonitriles,” Acta Pharmaceutica, vol. 62, no. 1, pp. 15–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Foloppe, L. M. Fisher, R. Howes, A. Potter, A. G. S. Robertson, and A. E. Surgenor, “Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening,” Bioorganic and Medicinal Chemistry, vol. 14, no. 14, pp. 4792–4802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Vasuki and K. Kumaravel, “Rapid four-component reactions in water: Synthesis of pyranopyrazoles,” Tetrahedron Letters, vol. 49, no. 39, pp. 5636–5638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. E. A. Zaki, H. A. Soliman, O. A. Hiekal, and A. E. Z. Rashad, “Pyrazolopyranopyrimidines as a class of anti-inflammatory agents,” Naturforsch C, vol. 61, pp. 1–5, 2006.
  15. F. M. Abdelrazek, P. Metz, N. H. Metwally, and S. F. El-Mahrouky, “Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives,” Archiv der Pharmazie, vol. 339, no. 8, pp. 456–460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. El-Assiery, G. H. Sayed, and A. Fouda, “Synthesis of some new annulated pyrazolo-pyrido (or pyrano) pyrimidine, pyrazolopyridine and pyranopyrazole derivatives,” Acta Pharmaceutica, vol. 54, no. 2, pp. 143–150, 2004. View at Scopus
  17. J. M. Khurana, B. Nand, and S. Kumar, “Rapid synthesis of polyfunctionalized pyrano[2,3-c]pyrazoles via multicomponent condensation in room-temperature ionic liquids,” Synthetic Communications, vol. 41, no. 3, pp. 405–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, and X. Wang, “Three-component one-pot synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives in aqueous media,” Synthetic Communications, vol. 34, no. 24, pp. 4557–4563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-S. Jin, R.-Q. Zhao, and T.-S. Li, “An one-pot three-component process for the synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles in aqueous media,” Arkivoc, vol. 2006, no. 11, pp. 176–182, 2006. View at Scopus
  20. H. V. Chavan, S. B. Babar, R. U. Hoval, and B. P. Bandgar, “Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition,” Bulletin of the Korean Chemical Society, vol. 32, no. 11, pp. 3963–3966, 2011. View at Scopus
  21. H. Mecadon, M. R. Rohman, M. Rajbangshi, and B. Myrboh, “γ-alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5- carbonitriles in aqueous medium,” Tetrahedron Letters, vol. 52, no. 19, pp. 2523–2525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Peng, G. Song, and R. Dou, “Surface cleaning under combined microwave and ultrasound irradiation: Flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media,” Green Chemistry, vol. 8, no. 6, pp. 573–575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. N. Darandale, J. N. Sangshetti, and D. B. Shinde, “Ultrasound mediated, sodium bisulfite catalyzed, solvent free synthesis of 6-amino-3-methyl-4-substitued-2, 4-dihydropyrano[2, 3-c]pyrazole-5-carbonitrile,” Journal of the Korean Chemical Society, vol. 56, no. 3, pp. 328–3333, 2012. View at Publisher · View at Google Scholar
  24. M. B. Madhusudana Reddy and M. A. Pasha, “One-pot, multicomponent synthesis of 4H-pyrano[2,3-c]pyrazoles in water at 25°C,” Indian Journal of Chemistry B, vol. 51, no. 3, pp. 537–541, 2012. View at Scopus
  25. S. U. Tekale, S. S. Shisodia, S. S. Kauthale et al., “Micron particles of AlN/Al: Efficient, novel, and reusable heterogeneous catalyst for the synthesis of bis(indolyl)methanes,” Synthetic Communications, vol. 1, no. 43, pp. 1849–1858, 2013.